4.5 Article

Distributed Caching in Converged Networks: A Deep Reinforcement Learning Approach

期刊

IEEE TRANSACTIONS ON BROADCASTING
卷 67, 期 1, 页码 201-211

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TBC.2020.2996087

关键词

Reinforcement learning; Throughput; Base stations; Broadcasting; Optimization; Cellular networks; Wireless networks; Converged networks; distributed caching; reinforcement learning; traffic offloading

资金

  1. National Natural Science Foundation of China [61671295, 61671128]
  2. Shanghai Key Laboratory of Digital Media Processing
  3. Shanghai Pujiang Program [16PJD029]
  4. 111 Project [B07022]
  5. National Key Laboratory of Science and Technology on Communications [KX172600030]

向作者/读者索取更多资源

Content caching plays an important role in converged networks but is limited by the storage capacity of terminals. Research shows that caching popular services in router nodes close to the terminators can improve energy efficiency, yet faces challenges with service scheduling.
Content caching is an effective technique to alleviate the burden on backhaul links and reduce the traffic in cellular networks. In converged networks, broadcasting networks can push non-real-time popular services to different types of terminals during off-peak hours, while cellular networks are deployed to meet personalized needs. However, the storage capacity of terminals are usually limited. In this context, we study on the converged networks to push and cache the popular services in the router nodes close to the terminators. In this scheme, the most popular services are transmitted by the broadcasting base station and cached in the router nodes in a distributed cache network. Then, users can access the cached services in a more energy efficient manner. Due to the limited storage capacity of the router node, we assume that the user can access the cached services within two hops. Then, we formulate the service scheduling problem as a Markov Decision Process, aiming to maximize equivalent throughput (ET). Due to the large state space involved in the distributed cache network, it is quite challenging to obtain a tractable solution by the classical optimization algorithms. To handle this problem, a deep reinforcement learning based framework is proposed to tackle this problem. The simulation results show that the proposed algorithms are very effective; and they outperform the conventional one in term of the ET, especially when the users in the network subject to Poisson point process distribution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据