4.8 Article

Biological mechanisms may contribute to soil carbon saturation patterns

期刊

GLOBAL CHANGE BIOLOGY
卷 27, 期 12, 页码 2633-2644

出版社

WILEY
DOI: 10.1111/gcb.15584

关键词

carbon inputs; decomposition; microbial biomass; microbial density dependence; soil carbon model; soil carbon sequestration; soil organic matter

资金

  1. Oak Ridge National Laboratory

向作者/读者索取更多资源

The saturation of mineral-associated SOC may be a result of ecological constraints on microbial biomass, leading to a reduced rate of SOC formation as C inputs increase. Understanding how these ecological factors limit microbial populations will help predict and manage soil C dynamics.
Increasing soil organic carbon (SOC) storage is a key strategy to mitigate rising atmospheric CO2, yet SOC pools often appear to saturate, or increase at a declining rate, as carbon (C) inputs increase. Soil C saturation is commonly hypothesized to result from the finite amount of reactive mineral surface area available for retaining SOC, and is accordingly represented in SOC models as a physicochemically determined SOC upper limit. However, mineral-associated SOC is largely microbially generated. In this perspective, we present the hypothesis that apparent SOC saturation patterns could emerge as a result of ecological constraints on microbial biomass-for example, via competition or predation-leading to reduced C flow through microbes and a reduced rate of mineral-associated SOC formation as soil C inputs increase. Microbially explicit SOC models offer an opportunity to explore this hypothesis, yet most of these models predict linear microbial biomass increases with C inputs and insensitivity of SOC to input rates. Synthesis of 54 C addition studies revealed constraints on microbial biomass as C inputs increase. Different hypotheses limiting microbial density were embedded in a three-pool SOC model without explicit limits on mineral surface area. As inputs increased, the model demonstrated either no change, linear, or apparently saturating increases in mineral-associated and particulate SOC pools. Taken together, our results suggest that microbial constraints are common and could lead to reduced mineral-associated SOC formation as input rates increase. We conclude that SOC responses to altered C inputs-or any environmental change-are influenced by the ecological factors that limit microbial populations, allowing for a wider range of potential SOC responses to stimuli. Understanding how biotic versus abiotic factors contribute to these patterns will better enable us to predict and manage soil C dynamics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据