4.7 Article

Partitioning of elements between high-temperature, low-density aqueous fluid and silicate melt as derived from volcanic gas geochemistry

期刊

GEOCHIMICA ET COSMOCHIMICA ACTA
卷 295, 期 -, 页码 112-134

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2020.12.011

关键词

Element partitioning; Volcanic gas; Silicate melt; Bubble growth; Diffusion; Equilibrium

资金

  1. RFBR [19-05-00777A]
  2. Australian Research Council [DP200100406]
  3. Australian Research Council [DP200100406] Funding Source: Australian Research Council

向作者/读者索取更多资源

By comparing the compositions of high-quality volcanic gas and whole rocks, the researchers calculated the apparent mass partition coefficients for 58 elements on six basaltic volcanoes, finding significant variations in partition coefficients that are influenced by concentrations of sulfur, chlorine, and other elements in the gas.
By comparing high-quality volcanic gas and whole rock compositions, we calculated the apparent (observed) mass partition coefficients Kd* for 58 elements on six basaltic volcanoes located in arc and rift/hotspot settings. The inferred Kd* vary from similar to 1100 for sulfur to 0.0001 for zirconium, i.e., within seven orders of magnitude. Only 14 elements have Kd* > 1, including highly volatile S, Se, Te and halogens, as well as Tl, Re, Os, Bi, Cd, Au, In and As. Alkali metals have Kd* in the range from 0.1 for Cs to 0.01 for Na. Partition coefficients of other rock-forming elements are <0.001. The partition coefficients for elements depend on element speciation and concentrations of ligand-forming elements in the gas such as sulfur and chlorine. Elements transported in the gas predominantly as halides have higher partition coefficients in HCl-rich arc gases, whereas elements preferably forming sulfides, hydrides and free atoms, have higher Kd* in sulfur-rich, HCl-poor and reduced rift/hotspot gases. Degassing directly from the free melt surface is negligible; deep gas passing through the erupting vent is quickly overwhelmed by the signal of low-pressure degassing. Equilibration of rising bubbles with the surrounding melt almost eliminates the difference between Kd* calculated for degassing lava flows (no connection with deep magma) and for lava lakes and open-vent volcanoes (convective mass exchange with deep magma takes place). Diffusion does not strongly affect the apparent partitioning of magmas degassing at surface. Gas bubbles growing in near-surface silicate melts at atmospheric pressure have a large density difference compared to the surrounding melt of 12-15 thousand times. This leads to the rapid expansion of such bubbles and a decrease in the thickness of the diffusion boundary layer in the melt due to its stretching around the growing bubble, which sharply decreases diffusion fractionation. As a result, the apparent partition coefficients (Kd*) for degassing basaltic volcanoes are close to the equilibrium ones (Kd) for most of the elements. The partition coefficients of volatile elements (S and Cl) calculated from the comparison of volcanic gas and rock compositions are in agreement with the values determined previously via experiments or theoretical modeling. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据