4.5 Article

Solar Hydrogen Production via a Samarium Oxide-Based Thermochemical Water Splitting Cycle

期刊

ENERGIES
卷 9, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/en9050316

关键词

solar thermochemical; thermodynamics; hydrogen; water splitting; samarium oxide; computational analysis

资金

  1. NPRP grant from the Qatar National Research Fund (Qatar Foundation) [NPRP8-370-2-154]
  2. UREP grant from the Qatar National Research Fund (Qatar Foundation) [UREP18-146-2-060]
  3. Qatar University [QUUG-CENG-CHE-14\15-10]

向作者/读者索取更多资源

The computational thermodynamic analysis of a samarium oxide-based two-step solar thermochemical water splitting cycle is reported. The analysis is performed using HSC chemistry software and databases. The first (solar-based) step drives the thermal reduction of Sm2O3 into Sm and O-2. The second (non-solar) step corresponds to the production of H-2 via a water splitting reaction and the oxidation of Sm to Sm2O3. The equilibrium thermodynamic compositions related to the thermal reduction and water splitting steps are determined. The effect of oxygen partial pressure in the inert flushing gas on the thermal reduction temperature (T-H) is examined. An analysis based on the second law of thermodynamics is performed to determine the cycle efficiency ((cycle)) and solar-to-fuel energy conversion efficiency ((solar-to-fuel)) attainable with and without heat recuperation. The results indicate that (cycle) and (solar-to-fuel) both increase with decreasing T-H, due to the reduction in oxygen partial pressure in the inert flushing gas. Furthermore, the recuperation of heat for the operation of the cycle significantly improves the solar reactor efficiency. For instance, in the case where T-H = 2280 K, (cycle) = 24.4% and (solar-to-fuel) = 29.5% (without heat recuperation), while (cycle) = 31.3% and (solar-to-fuel) = 37.8% (with 40% heat recuperation).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据