4.7 Review

Synthesis pathway and combustion mechanism of a sustainable biofuel 2,5-Dimethylfuran: Progress and prospective

期刊

FUEL
卷 286, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2020.119337

关键词

2,5-Dimethylfuran; Catalyst synthesis; Decomposition mechanism; Flame characteristics; Alternative fuel; Spray characteristics

向作者/读者索取更多资源

In recent years, 2,5-Dimethylfuran (DMF) has been identified as a promising new biofuel that is synthesized from renewable lignocellulosic biomass. Research has focused on synthesis pathways, decomposition mechanisms, combustion characteristics, and production strategies for commercialization. Further investigations are needed to understand the combustion and emission formation characteristics of using DMF in engines.
In recent years, 2,5-Dimethylfuran (DMF) is found as a promising new biofuel generation that could be synthesized from renewable and available lignocellulosic biomass in small-to-large scale. The combustion characteristics of DMF are believed to be comparable to those of fossil fuels. Many studies have focused on the synthesis pathways of DMF from the various feedstock, while decomposition mechanism and combustion characteristics were also carefully investigated by experiments and simulations. In addition, kinetic mechanisms were developed in detail and were used to compare to quantum chemical calculations. However, the production strategy should be understood clearly to target the commercialization goal of DMF. Moreover, the decomposition mechanism through pyrolysis and oxidation reactions, flame characteristics, and spray characteristics of DMF should be completely analyzed to evaluate the characteristics of combustion and emission formation as applying DMF to the engine. In the current paper, the production progress of DMF was thoroughly detailed via catalyst reactions. More importantly, the critical route from decomposition to combustion was critically discussed based on the collection and consolidation of data achieved from experiment and the kinetic model validations aiming to improve the data fidelity, to develop the accuracy of kinetic models, and to minimize the experimental uncertainties. Finally, this work could become a motivation to perform further investigations on using DMF as a promising biofuel for the engine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据