4.6 Article

Inferring translational heterogeneity from Saccharomyces cerevisiae ribosome profiling

期刊

FEBS JOURNAL
卷 288, 期 15, 页码 4541-4559

出版社

WILEY
DOI: 10.1111/febs.15748

关键词

codon bias; protein biogenesis; ribosome profiling; translation regulation; tRNA modification

资金

  1. Natural Sciences and Engineering Research Council of Canada [06504-2016]
  2. Canada Research Chair in Computational Systems Biology [06504-2016]

向作者/读者索取更多资源

The translation of mRNAs into proteins by the ribosome is a crucial step in protein biosynthesis, tightly controlled to maintain cellular homeostasis. Ribosome profiling has provided insights into translation mechanisms, yet many aspects remain mysterious due to challenges in data interpretation. The study reveals programmed translational heterogeneity in genomic sequences, impacting cellular homeostasis and highlighting the complexity of translation regulation.
Translation of mRNAs into proteins by the ribosome is the most important step of protein biosynthesis. Accordingly, translation is tightly controlled and heavily regulated to maintain cellular homeostasis. Ribosome profiling (Ribo-seq) has revolutionized the study of translation by revealing many of its underlying mechanisms. However, equally many aspects of translation remain mysterious, in part also due to persisting challenges in the interpretation of data obtained from Ribo-seq experiments. Here, we show that some of the variability observed in Ribo-seq data has biological origins and reflects programmed heterogeneity of translation. Through a comparative analysis of Ribo-seq data from Saccharomyces cerevisiae, we systematically identify short 3-codon sequences that are differentially translated (DT) across mRNAs, that is, identical sequences that are translated sometimes fast and sometimes slowly beyond what can be attributed to variability between experiments. Remarkably, the thus identified DT sequences link to mechanisms known to regulate translation elongation and are enriched in genes important for protein and organelle biosynthesis. Our results thus highlight examples of translational heterogeneity that are encoded in the genomic sequences and tuned to optimizing cellular homeostasis. More generally, our work highlights the power of Ribo-seq to understand the complexities of translation regulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据