4.7 Article

Harmonisation of PET/CT contrast recovery performance for brain studies

出版社

SPRINGER
DOI: 10.1007/s00259-021-05201-w

关键词

Brain; Neuroimaging; PET; Harmonisation; Standardisation; Image quality

资金

  1. Amsterdam UMC (Vrije Universiteit Amsterdam)

向作者/读者索取更多资源

In order to achieve comparability of image quality among PET systems, harmonisation criteria for PET brain studies were developed based on data from 12 clinical PET/CT systems. The study proposed using RCGMe and GMWMr(e) as criteria for selecting reconstruction settings to ensure image comparability across different scanners. These proposed standards should be further tested to validate and refine the harmonisation criteria.
Purpose In order to achieve comparability of image quality, harmonisation of PET system performance is imperative. In this study, prototype harmonisation criteria for PET brain studies were developed. Methods Twelve clinical PET/CT systems (4 GE, 4 Philips, 4 Siemens, including SiPM-based digital systems) were used to acquire 30-min PET scans of a Hoffman 3D Brain phantom filled with similar to 33 kBq.mL(-1) [F-18]FDG. Scan data were reconstructed using various reconstruction settings. The images were rigidly coregistered to a template (voxel size 1.17 x 1.17 x 2.00 mm(3)) onto which several volumes of interest (VOIs) were defined. Recovery coefficients (RC) and grey matter to white matter ratios (GMWMr) were derived for eroded (denoted in the text by subscript e) and non-eroded grey (GM) and white (WM) matter VOIs as well as a mid-phantom cold spot (VOIcold) and VOIs from the Hammers atlas. In addition, left-right hemisphere differences and voxel-by-voxel differences compared to a reference image were assessed. Results Systematic differences were observed for reconstructions with and without point-spread-function modelling (PSFON and PSFOFF, respectively). Normalising to image-derived activity, upper and lower limits ensuring image comparability were as follows: for PSFON, RCGMe = [0.97-1.01] and GMWMr(e) = [3.51-3.91] for eroded VOI and RCGM = [0.78-0.83] and GMWMr = [1.77-2.06] for non-eroded VOI, and for PSFOFF, RCGMe = [0.92-0.99] and GMWMr(e) = [3.14-3.68] for eroded VOI and RCGM = [0.75-0.81] and GMWMr = [1.72-1.95] for non-eroded VOI. Conclusions To achieve inter-scanner comparability, we propose selecting reconstruction settings based on RCGMe and GMWMr(e) as specified in Results. These proposed standards should be tested prospectively to validate and/or refine the harmonisation criteria.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据