4.7 Article

Toxicity mitigation by N-acetylcysteine and synergistic toxic effect of nano and bulk ZnO to Panagrellus redivivus

期刊

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
卷 28, 期 26, 页码 34436-34449

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-021-12674-7

关键词

Zinc-oxide; N-acetylcysteine; Interaction; Nanomaterial; Nematode; Synergistic

资金

  1. Szent Istvan University
  2. New National Excellence Program [UNKP-18-3-III-SZIE-7, 2017-1.3.1-VKE-2017-00001]

向作者/读者索取更多资源

The study investigated the toxic effects of ZnO nanoparticles of different sizes, with N-acetylcysteine (NAC) found to mitigate the toxicity and ZnCl2 exhibiting lower toxicity compared to ZnO particles. Toxicity increased significantly when the two materials were applied in binary mixtures, highlighting the importance of chemical and physical properties in determining toxicity.
To better understand the nanosize-relevant toxic effects and underlying mechanisms, N-acetylcysteine (NAC), as a mitigation agent, an ionic form of Zn (ZnCl2), and the binary mixture of ZnO with different particle sizes (15 nm and 140 nm), was used in toxicity assays with the nematode Panagrellus redivivus. The ZnCl2 concentrations were applied to show the amount of dissolved Zn ions present in the test system. Reactive oxygen species (ROS) measuring method was developed to fit the used test system. Our studies have shown that NAC can mitigate the toxic effects of both studied particle sizes. In the applied concentrations, ZnCl2 was less toxic than both of the ZnO particles. This finding indicates that not only ions and ROS produced by the dissolution are behind the toxic effects of the ZnO NPs, but also other particle size-dependent toxic effects, like the spontaneous ROS generation, are also relevant. When the two materials were applied in binary mixtures, the toxic effects increased significantly, and the dissolved zinc content and the ROS generation also increased. It is assumed that the chemical and physical properties of the materials have been mutually reinforcing to form a more reactive mixture that is more toxic to the P. redivivus test organism. Our findings demonstrate the importance of using mitigation agent and mixtures to evaluate the size-dependent toxicity of the ZnO.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据