4.7 Review

Comparison of in situ sediment remediation amendments: Risk perspectives from species sensitivity distribution

期刊

ENVIRONMENTAL POLLUTION
卷 272, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2020.115995

关键词

Remediation methods; Aquatic organisms; Species sensitivity distributions (SSD); Ecological risks; Toxicity

资金

  1. University of Naples Federico II and Stazione Zoologica Anton Dohrn (Naples)

向作者/读者索取更多资源

The study applied the species sensitivity distribution approach to assess the toxicity of amendments used for in situ sediment remediation on aquatic organisms, finding that activated carbon and nano-Zero-Valent-Iron were relatively safer and more effective in protecting aquatic environments.
Contaminated sediment is a major issue for aquatic environments, but attention must be kept even during remediation activities that can negatively affect resident biota especially when applied in situ. For the first time, the species sensitivity distribution (SSD) approach was applied to amendments used for in situ sediment remediation considering 39 papers including both freshwater (F) and saltwater (S) effect data (i.e. n = 17 only F, n = 19 only S, and n = 3 both F and S). Toxicity data related to the application of activated carbon (AC), nano-Zero-Valent-Iron (nZVI), apatite (A), organoclay (OC) and zeolite (Z) were collected and analyzed. SSD curves were constructed by lognormal model providing comprehensive comparisons of the sensitivities of different species to the relative testing methods. Results indicated that Bacteria were the most sensitive group of testing organisms, while Crustaceans were the less sensitive. The hazardous concentration for 5% of the affected species (HC5) were derived to determine the concentration protecting 95% of the species. OC, A and Z presented both acute and chronic toxicity. The HC5 values in descending order are: AC (4.79 g/L) > nZVI (0.02 g/L) > OC, A and Z (1.77E-04 g/L). AC and nZVI can be considered safer than OC, A and Z in sediment remediation activities, even if in situ long-term effects remained still underexplored. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据