4.7 Article

An efficient phthalate ester-degrading Bacillus subtilis: Degradation kinetics, metabolic pathway, and catalytic mechanism of the key enzyme

期刊

ENVIRONMENTAL POLLUTION
卷 273, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2021.116461

关键词

Phthalate ester; Bacillus subtilis; Generally recognized as safe; Di-ester bond hydrolase; Baijiu

资金

  1. National Natural Science Foundation of China [32072165, 31801467, 31830069]
  2. Beijing Municipal Natural Science Foundation & Beijing Municipal Education Commission [KM202110011003, KZ202010011018]
  3. School Level Cultivation Foundation of Beijing Technology and Business University for Distinguished and Excellent Young Scholars [BTBUYP2021]

向作者/读者索取更多资源

The GRAS Bacillus subtilis strain BJQ0005 efficiently degraded phthalate esters, and its metabolic pathway and enzyme mechanism have been thoroughly studied. This provides important insights for solving phthalate ester pollution in the environment and food industry.
Phthalate ester pollution in the environment and food chain is frequently reported. Microbial treatment is a green and efficient method for solving this problem. The isolation and systematic investigation of microorganisms generally recognized as safe (GRAS) will provide useful resources. A GRAS Bacillus subtilis strain, BJQ0005, was isolated from Baijiu fermentation starter and efficiently degraded phthalate esters (PAEs). The half-lives for di-isobutyl phthalate, di-butyl phthalate and di-(2-ethylhexyl) phthalate were 3.93, 4.28, and 25.49 h, respectively, from the initial amount of 10 mg per 10 mL reaction mixture, which are records using wild-type strains. Genome sequencing and metabolic intermediate analysis generated the whole metabolic pathway. Eighteen enzymes from the alpha/beta hydrolase family were expressed. Enzymes GTW28_09400 and GTW28_13725 were capable of single ester bond hydrolysis of PAEs, while GTW28_17760 hydrolyzed di-ester bonds of PAEs. Using molecular docking, a possible mechanism affecting enzymatic ester bond hydrolysis of mono-butyl phthalate was proposed of GTW28_17760. The carboxyl group generated by the first hydrolysis step interacted with histidine in the catalytic active center, which negatively affected enzymatic hydrolysis. Isolation and systematic investigation of the PAE degradation characteristics of B. subtilis will promote the green and safe treatment of PAEs in the environment and food industry. (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据