4.7 Article

Dark-field hyperspectral microscopy for label-free microplastics and nanoplastics detection and identification in vivo: A Caenorhabditis elegans study

期刊

ENVIRONMENTAL POLLUTION
卷 271, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2020.116337

关键词

Microplastics; Dark-field hyperspectral microscopy; Polystyrene; Caenorhabditis elegans; Minimum detection size

资金

  1. Kazan Federal University [0671-2020-0058]
  2. Russian Federation presidential grant [MD-2153.2020.3]

向作者/读者索取更多资源

This study introduces a novel methodology for visualizing and identifying nano- and microscale polymer particles, showcasing the potential of dark-field hyperspectral microscopy in detecting and quantifying microplastics pollution.
Microplastics pollution is a serious ecological threat, severely affecting environments and human health. Tackling microplastics pollution requires an effective methodology to detect minute polymer particles in environmental samples and organisms. Here were report a novel methodology to visualise and identify nanoscale (down to 100 nm) and microscale synthetic commercially-available uniform spherical polymer particles using dark-field hyperspectral microscopy in visible-near infrared (400-1000 nm) wavelength range. Polystyrene particles with diameters between 100 nm-1 mu m, polymethacrylate 1 mu m and melamine formaldehyde 2 mu m microspheres suspended in pure water samples were effectively imaged and chemically identified based on spectral signatures and image-assisted analysis. We succeeded in visualisation and spectral identification of pure and mixed nano- and microplastics in vivo employing optically-transparent Caenorhabditis elegans nematodes as a model to demonstrate the ingestion and tissue distribution of microplastics. As we demonstrate here, dark-field hyperspectral microscopy is capable for differentiating between chemically-different microplastics confined within live invertebrate intestines. Moreover, this optical technology allows for quantitative identification of microplastics ingested by nematodes. We believe that this label-free non-destructive methodology will find numerous applications in environmental nano- and microplastics detection and quantification, investigation of their biodistribution in tissues and organs and nanotoxicology. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据