4.7 Article

Separation and identification of microplastics in marine organisms by TGA-FTIR-GC/MS: A case study of mussels from coastal China

期刊

ENVIRONMENTAL POLLUTION
卷 272, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2020.115946

关键词

Microplastics; TGA-FTIR-GC/MS; KOH; Mussels; Thermal analysis

资金

  1. Zhejiang Provincial Natural Science Foundation of China [LY20B070011]
  2. Zhejiang Provincial Science and Technology Program of China [LGF18B070003]
  3. Science and Technology Program of Zhoushan, Zhejiang Provincial, China [2019C31042]

向作者/读者索取更多资源

The study presents a method for detecting and quantifying microplastics in marine mussels, showcasing its effectiveness in identifying various types of plastics. Analysis conducted on mussels from six locations along the coast of China revealed polyethylene as the most commonly found plastic type, with mussels from Dalian having the highest microplastic content.
Microplastics are ubiquitous in the marine environment but characterizing them in marine organisms is challenging. Herein we describe a method to detect, identify, and quantify microplastics in marine mussels (Mytilus edulis) using thermal gravimetric analysis - Fourier Transform infrared spectroscopy - gas chromatography mass spectrometry (TGA-FTIR-GC/MS) after extracting and isolating the microplastics using chemical digestion, density separation, and filtration. Combining the three instrumental techniques adds discriminatory power as temperature profiles, chromatograms, and vibrational and mass spectra differ among common plastics. First, we tested several digestion schemes after spiking the mussels with plastics commonly found in the marine environment, including polyethylene (PE), polystyrene (PS), polypropylene (PP) and polyvinyl chloride (PVC). KOH (10%, w/v) was the most suitable reagent, providing good recoveries (>97%) without degrading the microplastics. We show that the technique TGA-FTIR-GC/MS can be optimized to readily determine both the type (polymer) and amount (mass) of microplastics in the sample. Applied to 100 mussels from each of six locations along the coast of China, we found an average of 0.58 mg of plastic per kg of tissue (range 0.16-1.71 mg/kg), with PE being the most abundant type of plastic measured. Among the coastal cities, mussels from Dalian had the highest microplastic content. Overall, we demonstrate that the method is a powerful technique to quantify masses of microplastics in marine mussels, a species commonly used as a bioindicator of pollution, and may be applied to other biota as well. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据