4.7 Article

Cadmium and molybdenum co-induce pyroptosis via ROS/PTEN/PI3K/AKT axis in duck renal tubular epithelial cells

期刊

ENVIRONMENTAL POLLUTION
卷 272, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2020.116403

关键词

Cadmium; Molybdenum; Pyroptosis; ROS/PTEN/PI3K/AKT; Duck renal tubular epithelial cell

资金

  1. National Natural Science Foundation of China [31960722]

向作者/读者索取更多资源

The study revealed that the combination of Mo and Cd synergistically induces oxidative stress and triggers pyroptosis via the ROS/PTEN/PI3K/AKT axis in duck renal tubular epithelial cells.
Cadmium (Cd) and excess molybdenum (Mo) are harmful to animals, but the combined nephrotoxic mechanism of Cd and Mo in duck remains poorly elucidated. To assess joint effects of Cd and Mo on pyroptosis via ROS/PTEN/PI3K/AKT axis in duck renal tubular epithelial cells, cells were cultured with 3CdSO(4)center dot 8H(2)O (4.0 mu M), (NH4)(6)Mo7O24 center dot 4H(2)O (500.0 mu M), MCC950 (10.0 mu M), BHA (100.0 mu M) and combination of Cd and Mo or Cd, Mo and MCC950 or Cd, Mo and BHA for 12 h, and the joint cytotoxicity was explored. The results manifested that toxicity of non-equitoxic binary mixtures of Mo and Cd exhibited synergic interaction. Mo or/and Cd elevated ROS level, PTEN mRNA and protein levels, and decreased PI3K, AKT and p-AKT expression levels. Simultaneously, Mo or/and Cd upregulated ASC, NLRP3, NEK7, Caspase-1, GSDMA, GSDME, IL-18 and IL-1 beta mRNA levels and Caspase-1 p20, NLRP3, ASC, GSDMD protein levels, increased the percentage of pyroptotic cells, LDH, NO, IL-18 and IL-1 beta releases as well as relative conductivity. Moreover, NLRP3 inhibitor MCC950 and ROS scavenger BHA could ameliorate the above changed factors induced by Mo and Cd co-exposure. Collectively, our results reveal that combination of Mo and Cd synergistically cause oxidative stress and trigger pyroptosis via ROS/PTEN/PI3K/AKT axis in duck tubular epithelial cells. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据