4.8 Review

Extreme heat and occupational injuries in different climate zones: A systematic review and meta-analysis of epidemiological evidence

期刊

ENVIRONMENT INTERNATIONAL
卷 148, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envint.2021.106384

关键词

Occupation injuries; Hot temperatures; Heatwaves; Climate zones

资金

  1. University of Adelaide (Adelaide Scholarship International) - Australia Research Council Discovery Program [DP200102571]
  2. Australian Research Council [DP200102571] Funding Source: Australian Research Council

向作者/读者索取更多资源

This study systematically reviewed and meta-analyzed the impact of extreme heat on occupational injuries in different climate zones. The results showed an increased risk during hot temperatures and heatwaves, with variations across climate zones and worker subgroups, calling for further research and interventions.
Background: The link between heat exposure and adverse health outcomes in workers is well documented and a growing body of epidemiological evidence from various countries suggests that extreme heat may also contribute to increased risk of occupational injuries (OI). Previously, there have been no comparative reviews assessing the risk of OI due to extreme heat within a wide range of global climate zones. The present review therefore aims to summarise the existing epidemiological evidence on the impact of extreme heat (hot temperatures and heatwaves (HW)) on OI in different climate zones and to assess the individual risk factors associated with workers and workplace that contribute to heat-associated OI risks. Methods: A systematic review of published peer-reviewed articles that assessed the effects of extreme heat on OI among non-military workers was undertaken using three databases (PubMed, Embase and Scopus) without temporal or geographical limits from database inception until July 2020. Extreme heat exposure was assessed in terms of hot temperatures and HW periods. For hot temperatures, the effect estimates were converted to relative risks (RR) associated with 1.C increase in temperature above reference values, while for HW, effect estimates were RR comparing heatwave with non-heatwave periods. The patterns of heat associated OI risk were investigated in different climate zones (according to Koppen Geiger classification) based on the study locations and were estimated using random-effects meta-analysis models. Subgroup analyses according to workers' characteristics (e.g. gender, age group, experience), nature of work (e. g. physical demands, location of work i.e. indoor/outdoor) and workplace characteristics (e.g. industries, business size) were also conducted. Results: A total of 24 studies published between 2005 and 2020 were included in the review. Among these, 22 studies met the eligibility criteria, representing almost 22 million OI across six countries (Australia, Canada, China, Italy, Spain, and USA) and were included in the meta-analysis. The pooled results suggested that the overall risk of OI increased by 1% (RR 1.010, 95% CI: 1.009-1.011) for 1. C increase in temperature above reference values and 17.4% (RR 1.174, 95% CI: 1.057-1.291) during HW. Among different climate zones, the highest risk of OI during hot temperatures was identified in Humid Subtropical Climates (RR 1.017, 95% CI: 1.014-1.020) followed by Oceanic (RR 1.010, 95% CI: 1.008-1.012) and Hot Mediterranean Climates (RR 1.009, 95% CI: 1.008-1.011). Similarly, Oceanic (RR 1.218, 95% CI: 1.093-1.343) and Humid Subtropical Climates (RR 1.213, 95% CI: 0.995-1.431) had the highest risk of OI during HW periods. No studies assessing the risk of OI in Tropical regions were found. The effects of hot temperatures on the risk of OI were acute with a lag effect of 1-2 days in all climate zones. Young workers (age < 35 years), male workers and workers in agriculture, forestry or fishing, construction and manufacturing industries were at high risk of OI during hot temperatures. Further young workers (age < 35 years), male workers and those working in electricity, gas and water and manufacturing industries were found to be at high risk of OI during HW. Conclusions: This review strengthens the evidence on the risk of heat-associated OI in different climate zones. The risk of OI associated with extreme heat is not evenly distributed and is dependent on underlying climatic conditions, workers' attributes, the nature of work and workplace characteristics. The differences in the risk of OI across different climate zones and worker subgroups warrant further investigation along with the development of climate and work-specific intervention strategies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据