4.8 Article

Bisphenol A promotes autophagy in ovarian granulosa cells by inducing AMPK/mTOR/ULK1 signalling pathway

期刊

ENVIRONMENT INTERNATIONAL
卷 147, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envint.2020.106298

关键词

Bisphenol A; Sex hormones; Autophagy; Apoptosis; AMPK

资金

  1. National Key Research and Development Program of China [2017YFC0212003]
  2. National Natural Science Foundation of China [81901566]

向作者/读者索取更多资源

This study demonstrated that BPA exposure could significantly decrease human ovarian functions and lead to abnormal folliculogenesis by activating autophagy in GCs through the AMPK/mTOR/ULK1 pathway.
Background: Bisphenol A (BPA) is a widespread endocrine-disrupting chemical with estrogen like effects, which could interfere with the human reproductive system by disrupting the normal function of granulosa cells (GCs) leading to abnormal ovarian function. However, the mechanism of its toxicity on human GCs has not been clearly described thus far. Methods: 106 normogonadotropic infertile women undergoing their first in-vitro fertilization-embryo transfer (IVF-ET) cycle were recruited. Urinary BPA level and the early outcomes of IVF-ET were analysed. Patients were divided to low and high BPA exposure groups using the median urinary BPA concentration as the cut-off value. In-vivo and in-vitro studies were conducted using mice and human granulosa cell line (KGN cells). Female Kunming mice approximately 6-8 weeks of age were poisoned with BPA at different dosages (1, 10 or 100 mu g/kg) by oral gavage once daily for 2 weeks, while KGN cells were exposed to BPA at the concentration of 1, 10 or 100 nM for 24 h, 48 h or 72 h. BPA-induced ovarian morphologic changes were analysed by histopathology investigation. Cell viability and apoptosis were evaluated using CCK-8, TUNEL and flowcytometric, respectively. Hormone levels were determined using ELISA and the molecular mechanism studies were conducted using immunofluorescence, RT-PCR and western blots. Results: The oocyte retrieval rate, maturation rate and embryo implantation rate significantly decreased with the higher level of urinary BPA concentration. Peak E2 level was lower in high BPA group, but no statistical significance could be observed. In BPA treated mice, cystic dilation of the follicles with a decreased number of GCs could be observed histopathologically. Decreased E2, P4 and AMH level and GCs autophagy could be detected both in-vivo and in-vitro with the activation of AMPK/mTOR/ULK1 signalling pathway. As being confirmed in KGN cells, phosphorylated AMPK and ULK1 increased while phosphorylated mTOR decreased, and by inhibition autophagy using knockdown of AMPK or 3-MA, adverse effects of BPA exposure in-vitro could be reversed. Conclusion: BPA exposure might abnormally influence human ovarian functions leading to abnormal folliculogenesis by activation of autophagy in GCs through AMPK/mTOR/ULK1 pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据