4.7 Review

Recent Development in Numerical Simulations and Experimental Studies of Biomass Thermochemical Conversion

期刊

ENERGY & FUELS
卷 35, 期 9, 页码 6940-6963

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.energyfuels.0c04139

关键词

-

资金

  1. Swedish Energy Agency (STEM) through KC-CECOST [22538-4]
  2. Knut & Alice Wallenberg foundation through the COCALD project

向作者/读者索取更多资源

Biomass is a renewable energy source that can be converted to various products. Thermochemical conversion is the most efficient method, capable of producing gas or liquid fuels, and heat and electricity. Research in biomass thermochemical conversion is actively growing, with new experimental methods and numerical modeling being introduced.
Biomass, as a renewable energy source, is available worldwide, is carbon neutral, and can be converted to various types of products depending on the market and on the specific applications. Among different technologies of biomass utilization, thermochemical conversion of biomass is the most efficient method with the shortest time scale of the process. Thermochemical conversion can be used to produce gas or liquid fuels, and it can be used for direct production of heat and electricity. Biomass thermochemical conversion is an active and fast growing field of research. New experimental methods with high spatial and temporal resolution such as laser diagnostics are being introduced, and numerical modeling of the physical and chemical details in biomass conversion is being conducted. In this review, we aim to provide an overview of the recent activities in the field of thermochemical conversion of biomass. Important parameters in the large scale conversion systems, such as temperature distribution, overall conversion rate of fuel, and distribution of different species, are strongly connected to the processes that occur on the scale of a single particle. Understanding the link between transport phenomena, chemical kinetics, and physical transformation on single particle scale can help to unravel issues such as emission and efficiency on the large scale. Hence, the focus of this review is on the single biomass particle, relevant to combustion and gasification systems. Special attention is paid to high fidelity numerical models and state-of-the-art experimental techniques that have been developed or employed over recent years to understand different aspects of biomass thermochemical conversion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据