4.7 Article

Reaction model of low asphaltene heavy oil from ramped temperature oxidation experimental analyses and numerical simulations

期刊

ENERGY
卷 219, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2020.119669

关键词

In situ combustion; Ramped temperature oxidation; Crude oil; Reaction model; Calibrations

资金

  1. National Natural Science Foundation of China [51876100]
  2. Science Fund for Creative Research Group [51621062]
  3. PetroChina Technology R&D Project on New Technology and Method for Oil & Gas Development [2016A-0901]

向作者/读者索取更多资源

This study investigated the reaction kinetics of China Xinjiang crude oil through Ramped Temperature Oxidation experiments and numerical simulations, and proposed a simplified reaction model to simulate the behaviors. Acceptable consistency was achieved between the experiments and simulations, demonstrating the predictive capability of the proposed model.
In situ combustion (ISC) is an advanced thermal recovery technique for crude oil exploitation. The crude oil reaction models with accurate kinetic data are crucial to predict the ISC process. This study investigated the China Xinjiang crude oil reaction kinetics through Ramped Temperature Oxidation (RTO) experiments and numerical simulations. Three different ISC behaviors with low-temperature oxidation (LTO), Negative Temperature Gradient Region (NTGR) reactions and high-temperature oxidation (HTO) were observed from the RTO experiments. The effects of the air injection rate and heating rate on the temperature profile and effluent gas composition were carefully investigated. Experimental results showed that the higher air injection rate and lower heating rate enhanced the heat generation, mainly from the more intensive exothermic HTO reactions. A simplified crude oil reaction model involving LTO, NTGR, and HTO was proposed and implemented with a numerical model to simulate the RTO behaviors. This study also suggested a workflow to build the reaction scheme and calibrate the kinetic data for good predictability and generalization. Acceptable consistency was achieved between the RTO experiments and numerical simulation, which demonstrates the proposed reaction model was predictive to capture the key oxidation mechanism and reproduce the ISC behaviors of the Xinjiang crude oil. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据