4.7 Article

7E analysis of a conceptual utility-scale land-based solar photovoltaic power plant

期刊

ENERGY
卷 219, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2020.119610

关键词

Energy; Exergy; Economic; Photovoltaic; RETScreen; Solar

资金

  1. Universiti Malaysia Pahang
  2. [PGRS1903172]

向作者/读者索取更多资源

A comprehensive analysis of a 5 MW solar photovoltaic power plant in five locations in Malaysia was conducted, covering energy, economic, and environmental factors. The study found that the proposed solar PV systems in all locations would operate effectively, with a minimum 80% performance ratio.
Large scale solar PV systems have a high priority among clean energy initiatives across the world. A comprehensive and more realistic analysis of the solar PV power plant is not reported yet. This study performs the energy, exergy, economic, environmental, energoeconomic, exergoeconomic, and enviroeconomic (7E) analysis of conceptual 5 MW land-based solar photovoltaic power plant in five locations of Malaysia. Solar irradiation and climate data for each location are collected from the meteorological database of RETScreen software. The energy, economic, and environmental performance of the proposed solar PV system is predicted using RETScreen software. The exergy, energoeconomic, exergoeconomic, and enviroeconomic parameters are assessed using Microsoft excel based mathematical model. It is observed that the solar PV system proposed for all the selected locations will operate sufficiently well with a minimum 80% performance ratio (PR). The capacity utilization factor (CUF) varied between 17.04% (Site 2) and 14.25% (Site 4). The exergy efficiency varied between 11.35% (Site 2) and 12.65% (Site 4). The lowest value of the Payback period and LCOE is estimated to be 7.9 years and 0.102 respectively for the Site 2 solar PV system with consideration of GHG reduction revenue. The reduction in the GHG emissions is highest in Site 2, which is equivalent to 975.4 acres of forest and 1479.8 tonnes of waste recycled. Site 2 has the lowest exergoeconomic and energoeconomic parameters, as well as the highest enviroeconomic parameter. Hence, it is concluded that Site 2 has the best condition for implementation of solar PV system (80% PR, 17.04% CUF, 11.35% exergy efficiency, 7.9 years simple payback period, 17.10% internal rate of return, 0.102 USD LCOE, 4291 tCO(2) avoided/annum, 0.0147 kWh/USD, 1.096 kW/USD, 42,916 USD) based on 7E analysis. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据