4.7 Article

Energy, economic, and environmental analysis of integration of thermal energy storage into district heating systems using waste heat from data centres

期刊

ENERGY
卷 219, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2020.119582

关键词

Mismatch problem; Peak load; Borehole thermal energy storage; Water tank; Energy bill; CO2 emissions

资金

  1. Research Council of Norway [262707]

向作者/读者索取更多资源

This study explores the utilization of waste heat from data centres in district heating systems by introducing thermal energy storages. Results showed that a water tank can reduce peak loads by 31% and save annual energy costs by 5%, while a borehole thermal energy storage system can increase waste heat utilization rate to 96% and reduce annual CO2 emissions by 8%.
Data centres produce waste heat, which can be utilized in district heating systems. However, the mismatch between data centres' heat supply and district heating systems' heat demands limits its utilization. Further, high peak loads increase the operation cost of district heating systems. This study aimed to solve these problems by introducing thermal energy storages. A water tank and a borehole thermal energy storage system were selected as the short-term and long-term thermal energy storage, respectively. Energy, economic, and environmental indicators were introduced to evaluate different solutions. The case study was a campus district heating system in Norway. Results showed that the water tank could shave the peak load by 31% and save the annual energy cost by 5%. The payback period was lower than 15 years when the storage efficiency remained higher than 80%. However, it had no obvious benefits in terms of mismatch relieving and CO2 emissions reduction. In contrast, the borehole thermal energy storage increased the waste heat utilization rate to 96% and reduced the annual CO2 emissions by 8%. However, the payback period was more than 17 years. These results provide guidelines for the retrofit of district heating systems, where data centres' waste heat is available. (C) 2020 The Author(s). Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据