4.6 Article

Modelling the influence of soil properties on performance and bioremediation ability of a pile of soil microbial fuel cells

期刊

ELECTROCHIMICA ACTA
卷 368, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2020.137568

关键词

Soil microbial fuel cell; Bioremediation; Modelling; Hexachlorobenzene

资金

  1. European Union's Horizon 2020 research and innovation programme [826312]

向作者/读者索取更多资源

This study introduces a novel tubular SMFC design with a ceramic tube as a separator and structural support. A mathematical model is proposed to evaluate the impact of system design and soil properties on performance, providing valuable insights for optimal design and operational conditions for SMFCs.
Worldwide, intense industrial and agricultural activities pose serious issues of land contamination. Soil microbial fuel cells (SMFCs) have great potential as a low-cost, and self-powered solution to soil bioremediation, compatible with operations in remote areas. In this study, we propose a novel tubular SMFC design, in which a ceramic tube acts as the separator between the air-cathode and the anode, while providing structural support. No oxygen reduction reaction catalyst is used, and to reach depth, several SMFC units are piled together. To assess the effect of both the system design and soil properties on performance, a mathematical model, calibrated with experimental data, is proposed, which accounts for chemical and (bio)electrochemical reactions, as well as for charge conservation and transport phenomena. The information generated provides useful indications on optimal design and operational conditions for SMFCs and a guide to effective scaleup strategies for their use in bioremediation. Crown Copyright (C) 2020 Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据