4.6 Article

Interface and composition engineering of vanadium doped cobalt nickel sulfide/phosphide heterostructure for efficient water splitting

期刊

ELECTROCHIMICA ACTA
卷 368, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2020.137602

关键词

Heterostructure; Transition metal dichalcogenides; Transition metal phosphides; Overall water splitting

资金

  1. China Postdoctoral Science Foundation [2016M601355]
  2. Natural Science Foundation of China [21603017]
  3. Natural Science Foundation of Jilin Province, China [20170101095JC]
  4. Foundation of Jilin Educational Committee [11KH20181091KJ]

向作者/读者索取更多资源

The vanadium doped cobalt nickel sulfide/phosphide heterostructure catalyst exhibits excellent performance in alkaline condition with small overpotentials for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), achieving higher current density.
Developing efficient and robust non-noble electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is desirable for future green energy systems of electrochemical water splitting technology. Thus, the vanadium doped cobalt nickel sulfide/phosphide heterostructure catalyst supported on nickel foam (V-CNS/P/NF) is fabricated by sulfidation reaction, followed by phosphorization from the layer double hydroxide (LDH) precursor. After V doping, the peak position of Ni and Co shifts negatively. Simultaneously, it is noted that the introduction of V into CNS/P can result in the enhanced electrochemical surface area and improved conductivity of CNS/P. Importantly, the optimal electrocatalyst of V-CNS/P/N exhibits excellent performance in alkaline condition with small overpotentials of 38 mV and 210 mV to achieve 10 mA cm(-2) for HER and OER, respectively. Remarkably, V-CNS/P/NF needs lower overpotential than that of Pt/C to reach higher current density of 500 mA cm(-2). A two-electrode system both assembled by as-prepared V-CNS/P/NF for electrochemical water splitting requires a cell voltage of 1.56 V to reach 10 mA cm(-2) . (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据