4.6 Article

Tailoring metal-oxide-supported PtNi as bifunctional catalysts of superior activity and stability for unitised regenerative fuel cell applications

期刊

ELECTROCHEMISTRY COMMUNICATIONS
卷 124, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.elecom.2021.106963

关键词

Unitised regenerative fuel cell; Oxygen reduction reaction; Oxygen evolution reaction; Binary metal oxides; Platinum; Nickel

资金

  1. Ministry of Education, Science and Technological Development of Republic of Serbia [451-03-68/2020-14/200146]
  2. Fundacao para a Ciencia e a Tecnologia, Portugal [UIDP/04540/2020, IST-ID/156-2018]
  3. Fundação para a Ciência e a Tecnologia [UIDP/04540/2020] Funding Source: FCT

向作者/读者索取更多资源

The study found that PtNi/Mn2O3-NiO showed the best performance for ORR, with the lowest Tafel slope, the highest diffusion-limited current density and number of electrons exchanged, along with the highest stability. This indicates that PtNi/Mn2O3-NiO has the highest electrochemical surface area and the lowest charge-transfer resistance.
Three different metal oxides based on Mn2O3 with TiO2 or NiO were synthesised. Pt or PtNi nanoparticles were anchored on each support, creating a set of nine samples that were tested for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). PtNi/Mn2O3-NiO showed the most promising results for ORR as evidenced by the lowest Tafel slope, the highest diffusion-limited current density and number of electrons exchanged, along with the highest stability. The best performance of PtNi/Mn2O3-NiO reflects its highest electrochemical surface area and the lowest charge-transfer resistance. Furthermore, this catalyst showed high activity for the OER as evidenced by the low Tafel slope and high current density at an overpotential of 400 mV. The present study indicated different active sites for the two reactions, i.e., PtNi NPs for the ORR and NiO for the OER.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据