4.5 Article

Effects of dietary cypermethrin exposure on swimming performance and expression of lipid homeostatic genes in livers of juvenile Chinook salmon, Oncorhynchus tshawytscha

期刊

ECOTOXICOLOGY
卷 30, 期 2, 页码 257-267

出版社

SPRINGER
DOI: 10.1007/s10646-021-02352-2

关键词

Cypermethrin; Chinook salmon; Swimming performance; Body burden

资金

  1. California Department of Fish and Wildlife Proposition 1 Restoration Grant Program [P1896015]

向作者/读者索取更多资源

Juvenile Chinook salmon were dietarily exposed to cypermethrin for 7, 14, or 21 days, with results showing no significant alterations in burst swimming performance but potential changes in gene expression related to lipid synthesis and energy metabolism in the liver. These findings suggest that U-max may not be a sensitive endpoint for assessing the effects of pyrethroids like cypermethrin, highlighting the importance of analyzing gene expression in fish exposed to pesticides.
The increased use of pyrethroid insecticides raises concern for exposure to non-target aquatic species, such as Chinook salmon (Oncorhynchus tshawytscha). Cypermethrin, a type II pyrethroid, is frequently detected in surface waters and sediments at concentrations that exceed levels that induce toxicity to several invertebrate and salmonid species. To better understand the effects of cypermethrin to salmonids following dietary exposure, juvenile Chinook salmon were dietarily exposed to a 0, 200, or 2000 ng/g cypermethrin diet for a duration of 7, 14, or 21 days and assessed for body burden residues, swimming performance, lipid content, and lipid homeostatic gene expression. The average cypermethrin concentrations in fish dietarily exposed to cypermethrin for 21 days were 155.4 and 952.1 ng cypermethrin/g lipid for the 200 and 2000 ng/g pellet treatments, respectively. Increased trends of fatty acid synthase (fasn, r(2) = 0.10, p < 0.05) and ATP citrate lyase (acly, r(2) = 0.21, p < 0.001) mRNA expression were found in the fish livers relative to increasing cypermethrin body burden residues, though no significant changes in the mRNA expression of farnesoid X receptor or liver X receptor were observed. Furthermore, Chinook salmon dietarily exposed to cypermethrin did not have a significantly altered burst swimming performance (U-max). These results support studies that have suggested U-max may not be a sensitive endpoint when assessing the effects of certain pesticide classes, such as pyrethroids, but that dysregulation of fasn and acly expression may alter lipid homeostasis and energy metabolism in the liver of fish dietarily exposed to cypermethrin.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据