4.7 Article

Effects of substrate combinations on greenhouse gas emissions and wastewater treatment performance in vertical subsurface flow constructed wetlands

期刊

ECOLOGICAL INDICATORS
卷 121, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.ecolind.2020.107189

关键词

Constructed wetlands; Greenhouse gas; Global warming potentials; Substrate combination; Microbial community

资金

  1. Natural Science Foundation of Shandong Province of China [ZR2019MD042]
  2. Project of Shandong Province Higher Educational Science and Technology Program [J18KA108]
  3. Science and Technology Support Plan for Youth Innovation of Colleges in Shandong Province [DC2000000961]

向作者/读者索取更多资源

The combination of walnut shell and Mn ore in constructed wetlands can help mitigate climate warming by reducing greenhouse gas emissions and improving wastewater treatment efficiency.
Climate warming would be generally influenced by the quantity and component of greenhouse gases during the carbon and nitrogen removal in constructed wetlands (CWs). In this study, the impacts of the combinations by walnut shell (organic-rich substrate improving denitrification), manganese (Mn) ore (electron-exchange substrate transferring CH4 to CO2) and activated alumina (phosphorus-adsorption substrate) on global warming potentials (GWPs) were investigated to propose a strategy for both mitigating GWPs and performing well in wastewater treatment. During hybrid CWs, the highest COD and TP removal efficiencies were respectively 89.4% and 98.1% in CWs with the substrate combination of Mn ore and activated alumina, and the highest TN removal efficiency was in CWs with walnut shell and Mn ore. The substrate combination of walnut shell and Mn ore would simultaneously strengthen the nitrification and denitrification process resulting in the lowest N2O flux in CWs. The combinations of Mn ore with walnut shell or activated alumina could significantly decrease the GWPs through promoting the conversion of CH4 to CO2 due to the better redox potential environment favorable for methanotrophs (pmoA) instead of methanogenesis (mcrA) provided by Mn ore. This study provided a feasible way to mitigate climate warming during wastewater treatment in CWs by using substrate combination of Mn ore and walnut shell.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据