4.6 Review

3D printing restorative materials using a stereolithographic technique: a systematic review

期刊

DENTAL MATERIALS
卷 37, 期 2, 页码 336-350

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.dental.2020.11.030

关键词

3D printing; Dentistry; Dental materials

资金

  1. CNPq do Brasil [302587/2017-9]
  2. CAPES do Brasil [PVEX 88881.337090/2019-01]
  3. NIH/NIDCR R21 grant [DE028444]

向作者/读者索取更多资源

This systematic review analyzes studies on stereolithography-based 3D printing of restorative materials, highlighting the trend in dental restoration. The research focuses on the properties, methods, and clinical applicability of different materials, with limited studies applying 3D printed structures on patients, indicating a gap between research and clinical implementation.
Objective. To present through a systematic review a qualitative analysis of studies published on stereolithography-based 3D printing of restorative materials and their clinical applicability. Methods. The literature search was conducted based on the question: What is the state-of-the-art of available restorative materials for 3D printing based on stereolithography? online search was conducted in three databases (MEDLINE/PubMed, Scopus and Web of Science) with no restriction for year of publication. Data are reported based on PRISMA, including publication details such as authors and their countries, year and journal of publication, and study design. The synthesis is focused on describing the dental restorative materials and properties evaluated, applied methods, 3D printers used and clinical applicability. Results. Studies that fit the inclusion criteria were performed in Asia (21), Europe (16) and USA (10), mostly using polymer-based restorative materials (38) for 3D printing constructs. Stereolithographic-printed ceramic-based restorative structures were evaluated by 9 studies. Many studies reported on dimensional accuracy (14), strength (11) and surface morphology (9) of the printed structures. Antibacterial response, cytotoxicity, internal and marginal fit, fracture and wear resistance, density, viscosity, elastic modulus, hardness, structural shrinkage and reliability, degree of conversion, layer cure depth, fatigue, and color were also evaluated by the included studies. Many of them (11) published a proof of concept as an attempt to demonstrate the clinical feasibility and applicability of the technology to print restorative materials, but only 5 studies actually applied the 3D printed restorative structures in patients, which highlights an increasing interest but limited early-stage translation. Significance. The fast expansion of stereolithographic-based 3D printing has been impressive and represents a great technological progress with significant disruptive potential. Dentistry has demonstrated an incredible willingness to adapt materials, methods and workflows to this promising digital technology. However, esthetic appearance, wear resistance, wet strength and dimensional accuracy are the main current clinical limitations restricting the progression to functional part production with 3D printing, which may explain the absence of clinical trials and reports on permanent/definitive dental restorative materials and structures. (c) 2020 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据