4.6 Article

Benchtop plasma treatment of titanium surfaces enhances cell response

期刊

DENTAL MATERIALS
卷 37, 期 4, 页码 690-700

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.dental.2021.01.026

关键词

Titanium; Dental implant; Osteoblast; Plasma gases; Wettability

资金

  1. NIH [R01AR052102, R01AR072500]
  2. CIT grant [MF19-005-LS]

向作者/读者索取更多资源

The study evaluated the effectiveness of on-site benchtop modification technique for implants at time of placement using DBD plasma treatment to improve implant surface properties and cellular response. The results showed that plasma treatment enhanced the differentiation and activity of MSCs and osteoblasts without modifying surface chemical composition, indicating its potential in altering surface properties for improved integration.
Objective. Modifications to implant surface properties, including topography, chemistry, and wettability, alter immune response, osteoblast differentiation of bone marrow stromal cells (MSCs), and implant integration in vivo. Dielectric barrier discharge (DBD) plasma treatment has been used to sterilize surfaces and remove adsorbed carbon, improving wettability. However, unless it is used immediately prior to placement, ambient atmospheric hydrocarbons rapidly adhere to the surface, thereby reducing its hydrophilicity. Moreover, this method is not practical in many clinical settings. The aim of this study was to evaluate the effectiveness of an on-site benchtop modification technique for implants at time of placement, consisting of a DBD plasma that is used to sterilize implants that are pre-packaged in a vacuum. Effects of the plasma-treatment on implant surface properties and cellular response of MSCs and osteoblasts were assessed in vitro. Methods. Titanium-aluminum-vanadium implant surfaces were grit-blasted (GB) or grit blasted and acid-etched (AE), and packaged under vacuum. AE surfaces were also plasma-treated using the benchtop device (GB + AE) and then removed from the vacuum. GB surface morphology was altered with AE but AE microroughness was not changed with the plasma-treatment. Plasma-treatment increased the surface wettability, but did not alter surface atomic concentrations of titanium, oxygen, or carbon. Results. MSCs and osteoblast-like cells (MG63 s) produced increased concentrations of osteocalcin, osteopontin, and osteoprotegerin after plasma-treatment of AE surfaces compared to non-plasma-treated AE surfaces; production of IL6 was reduced and IL10 was. Aging GB + AE surfaces for 7 days after plasma-treatment but still in the vacuum environment reduced the effectiveness of plasma on cellular response. Significance. Overall, these data suggest that application of benchtop plasma at the time of implant placement can alter the surface free energy of an implant surface without modifying surface chemical composition and enhance the differentiation and activity of MSCs and osteoblasts that are in contact with these implant surfaces. ? 2021 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据