4.8 Article

A neuronal blueprint for directional mechanosensation in larval zebrafish

期刊

CURRENT BIOLOGY
卷 31, 期 7, 页码 1463-+

出版社

CELL PRESS
DOI: 10.1016/j.cub.2021.01.045

关键词

-

资金

  1. NIH [R01NS39600]
  2. Max-Planck Society
  3. NIH BRAIN Initiative [1U19NS10465301]
  4. BMBF [01GQ1904]
  5. Helmholtz Association

向作者/读者索取更多资源

This study investigates rheotaxis in larval zebrafish using the lateral line system, finding structural constancy among lateral-line afferent neurons (LANs) and that precise topographic mapping of lateral-line receptors is not essential for the behavior. The data suggest that the integration of signals from direction-selective LANs influences the encoding of water-flow direction in the brain.
Animals have a remarkable ability to use local cues to orient in space in the absence of a panoramic fixed reference frame. Here we use the mechanosensory lateral line in larval zebrafish to understand rheotaxis, an innate oriented swimming evoked by water currents. We generated a comprehensive light-microscopy cell-resolution projectome of lateralis afferent neurons (LANs) and used clustering techniques for morphological classification. We find surprising structural constancy among LANs. Laser-mediated microlesions indicate that precise topographic mapping of lateral-line receptors is not essential for rheotaxis. Recording neuronal-activity during controlled mechanical stimulation of neuromasts reveals unequal representation of water-flow direction in the hindbrain. We explored potential circuit architectures constrained by anatomical and functional data to suggest a parsimonious model under which the integration of lateralized signals transmitted by direction-selective LANs underlies the encoding of water-flow direction in the brain. These data provide a new framework to understand how animals use local mechanical cues to orient in space.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据