4.8 Article

Reacquisition of light-harvesting genes in a marine cyanobacterium confers a broader solar niche

期刊

CURRENT BIOLOGY
卷 31, 期 7, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.cub.2021.01.047

关键词

-

资金

  1. National Aeronautics and Space Administration [NNA15BB04A]
  2. JSPS KAKENHI award [23370013]

向作者/读者索取更多资源

Phenotypic plasticity through horizontal gene transfer can enhance evolutionary adaptation, promote biological diversification, and broaden ecological niches.
The evolution of phenotypic plasticity, i.e., the environmental induction of alternative phenotypes by the same genotype, can be an important mechanism of biological diversification.(1,2) For example, an evolved increase in plasticity may promote ecological niche expansion as well as the innovation of novel traits;3 however, both the role of phenotypic plasticity in adaptive evolution and its underlying mechanisms are still poorly understood.(4,5) Here, we report that the Chlorophyll d-producing marine cyanobacterium Acaryochloris marina strain MBIC11017 has evolved greater photosynthetic plasticity by reacquiring light-harvesting genes via horizontal gene transfer. The genes, which had been lost by the A. marina ancestor, are involved in the production and degradation of the light-harvesting phycobiliprotein phycocyanin. A. marina MBIC11017 exhibits a high degree of wavelength-dependence in phycocyanin production, and this ability enables it to grow with yellow and green light wavelengths that are inaccessible to other A. marina. Consequently, this strain has a broader solar niche than its close relatives. We discuss the role of horizontal gene transfer for regaining a lost phenotype in light of Dollo?s Law6 that the loss of a complex trait is irreversible.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据