4.7 Article

Early age hydration, rheology and pumping characteristics of CSA cement-based 3D printable concrete

期刊

CONSTRUCTION AND BUILDING MATERIALS
卷 275, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2020.122136

关键词

3D printing; CSA cement; Retarder; Rheology; Lubricating layer; Pumping behaviour

资金

  1. SIM (Strategic Initiative Materials in Flanders)
  2. VLAIO (Flanders agency for innovation & entrepreneurship)

向作者/读者索取更多资源

Calcium sulfoaluminate (CSA) cement is a promising low-CO2 binder system that could potentially replace Portland cement in various applications. This study investigated the feasibility of using CSA cement for 3D printable concrete, and identified rapid hydration and high plastic viscosity as critical challenges. It was found that the use of borax and gluconate as retarders can improve the open time of CSA cement mixtures, but may affect early age compressive strength development.
Calcium sulfoaluminate (CSA) cement is one of the promising low-CO2 alternate binder systems that could replace Portland cement in a variety of applications. In the current study, the feasibility of using CSA cement as a binder for 3D printable concrete was investigated. Very short open time due to the rapid hydration and high plastic viscosity are identified as critical issues in using CSA cement. In this study, the effectiveness of two retarders, (borax and gluconate) on the early age hydration of the CSA cement mixture was investigated using a combination of isothermal calorimetry, ultrasonic pulse velocity measurements, and 1-day compressive strength and compared with a reference Portland cement (PC) mixture. Gluconate, although effective in increasing the open time, significantly affects the early age compressive strength development. Borax, on the other hand, provides a region of low thermal activity to ensure the sufficiently long open time, and thereafter the hydration resumes to reach a compressive strength similar to that of the non-retarded CSA mixture. Although the CSA and PC mixtures showed similar rheological properties for the lubricating layer, the pumping pressure required was higher for the CSA mixture as compared to the PC mixture due to the high plastic viscosity of the bulk material. However, it was observed that partial substitution of CSA with limestone powder could decrease the plastic viscosity of the bulk material and result in reduced pumping pressure. Finally, the buildability of the different mixtures was also evaluated based on the critical failure height. The CSA-limestone mixtures showed increased buildability as compared to the PC mixture, which can be explained based on the trend observed in the growth of P-wave velocity at early ages. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据