4.7 Article

hp-VPINNs: Variational physics-informed neural networks with domain decomposition

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2020.113547

关键词

Physics-informed learning; VPINNs; Variational neural network; Domain decomposition; Automatic differentiation; hp-refinement; Partial differential equations

资金

  1. Applied Mathematics Program within the Department of Energy, USA on the PhILMs project [DE-SC0019453]
  2. DARPA CompMods program on the DeepMMnet project [HR00112090062]

向作者/读者索取更多资源

The study proposes a general framework for hp-variational physics-informed neural networks (hp-VPINNs) based on the nonlinear approximation of shallow and deep neural networks and hp-refinement via domain decomposition and projection onto high-order polynomials. The hp-refinement corresponds to a global approximation with a local learning algorithm for efficient network parameter optimization, demonstrating advantages in accuracy and training cost for function approximation and solving differential equations.
We formulate a general framework for hp-variational physics-informed neural networks (hp-VPINNs) based on the nonlinear approximation of shallow and deep neural networks and hp-refinement via domain decomposition and projection onto the space of high-order polynomials. The trial space is the space of neural network, which is defined globally over the entire computational domain, while the test space contains piecewise polynomials. Specifically in this study, the hp-refinement corresponds to a global approximation with a local learning algorithm that can efficiently localize the network parameter optimization. We demonstrate the advantages of hp-VPINNs in both accuracy and training cost for several numerical examples of function approximation and in solving differential equations. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据