4.7 Review

Per- and polyfluoroalkyl substances and their alternatives in paper food packaging

期刊

出版社

WILEY
DOI: 10.1111/1541-4337.12726

关键词

internal sizing; moisture resistance; oil resistance; paper coating; perfluoralkyl; polyfluoroalkyl; surface sizing

向作者/读者索取更多资源

PFAS have been used in food contact paper for years but are now known to pose health risks. Finding safe alternatives remains a challenge, requiring more research to improve performance and cost-effectiveness.
Per- and polyfluoroalkyl substances (PFAS) have been used in food contact paper and paperboard for decades due to their unique ability to provide both moisture and oil/grease resistance. Once thought to be innocuous, it is now clear that long chain PFAS bioaccumulate and are linked to reproductive and developmental abnormalities, suppressed immune response, and tumor formation. Second-generation PFAS have shorter biological half-lives but concerns about health risks from chronic exposure underscore the need for safe substitutes. Waxes and polymer film laminates of polyethylene, poly(ethylene-co-vinyl alcohol), and polyethylene terephthalate are commonly used alternatives. However, such laminates are neither compostable nor recyclable. Lamination with biodegradable polymers, including polyesters, such as polylactic acid (PLA), polybutylene adipate terephthalate, polybutylene succinate, and polyhydroxyalkanoates, are of growing research and commercial interest. PLA films are perhaps the most viable alternative, but performance and compostability are suboptimal. Surface sizings and coatings of starches, chitosan, alginates, micro- and nanofibrilated cellulose, and gelatins provide adequate oil barrier properties but have poor moisture resistance without chemical modification. Plant proteins, including soy, wheat gluten, and corn zein, have been tested as paper coatings with soy being the most commercially important. Internal sizing agents, such as alkyl ketene dimers, alkenyl succinic anhydride, and rosin, improve moisture resistance but are poor oil/grease barriers. The difficulty in finding a viable replacement for PFAS chemicals that is cost-effective, fully biodegradable, and environmentally sound underscores the need for more research to improve barrier properties and process economics in food packaging products.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据