4.7 Article

An experimental implementation of inverse finite element method for real-time shape and strain sensing of composite and sandwich structures

期刊

COMPOSITE STRUCTURES
卷 258, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2020.113431

关键词

Inverse finite element method; Structural health monitoring; Shape sensing; FBG sensors; Strain gauges; Digital image correlation, woven composite structures

资金

  1. Scientific and Technological Research Council of Turkey (TUBITAK) [217M207]

向作者/读者索取更多资源

This study experimentally applies the inverse finite element method (iFEM) for real-time displacement reconstruction of a moderately thick wing-shaped sandwich structure using a network of strain sensors and the RZT algorithm. The results show that the iFEM approach demonstrates good consistency with traditional DIC/FEM analysis and experimental strain results.
In this study, the inverse finite element method (iFEM) is experimentally applied to real-time displacement reconstruction of a moderately thick wing-shaped sandwich structure via a network of strain sensors. For this purpose, the iFEM algorithm is incorporated to the kinematic relations of refined zigzag theory (RZT) by considering laminate mechanics of the woven-fabric reinforcement. After a twill-woven wing-shaped structure is manufactured with embedded fiber Bragg grating sensors and surface mounted strain gauges/rosettes, the discrete real-time experimental strains are acquired from these sensors concurrently during a flexural test of the structure. This data is then processed by iFEM algorithm for full-field displacement and strain monitoring. Moreover, the displacement fields at the one edge of the sandwich structure is monitored by digital image correlation (DIC) system simultaneously. Furthermore, the reference displacement solutions are established by performing high-fidelity FEM analysis. Finally, the three-dimensional real-time deformations and strains obtained through iFEM approach show very good consistency when compared to the results of DIC/FEM analysis and experimental strains, respectively. Overall, the present study serves as a comprehensive experimental guidance of iFEM-based shape and strain sensing for its realistic implementation on large-scale composite structures and notably increases technology readiness level of the iFEM methodology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据