4.7 Article

CARMN Loss Regulates Smooth Muscle Cells and Accelerates Atherosclerosis in Mice

期刊

CIRCULATION RESEARCH
卷 128, 期 9, 页码 1258-1275

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCRESAHA.120.318688

关键词

atherosclerosis; cell proliferation; cholesterol; inflammation; phenotype

资金

  1. British Heart Foundation (BHF) [RE/18/5/34216]
  2. BHF Chair [CH/11/2/28733]
  3. BHF programme Grant [RM/17/3/33381]
  4. European Research Council Advanced Grant VASMIR [RE7644]
  5. Dutch heart foundation fellowship [2016T060]
  6. Leducq transatlantic network grant
  7. BHF project grant
  8. European Union [825670]
  9. Wellcome Trust [204802/Z/16/Z]
  10. Australian National Health and Medical Research Council Early Career Fellowship [APP1072662]
  11. [FS/18/10/33413]
  12. MRC [MR/K017047/1] Funding Source: UKRI
  13. Wellcome Trust [204802/Z/16/Z] Funding Source: Wellcome Trust

向作者/读者索取更多资源

The loss of CARMN lncRNA is identified as a critical early event that primes vSMCs toward a proatherogenic phenotype in vitro and accelerates the development of atherosclerosis in vivo. Knockout of CARMN impairs the expression of miR-143 and miR-145 under homeostatic conditions, leading to increased volume, size, proinflammatory cell content, and altered plaque composition during atherosclerosis induction in mice.
Rationale: In the microenvironment of atherosclerotic lesions, vascular smooth muscle cells (vSMCs) switch to a dedifferentiated state but the underlying molecular mechanisms driving this switch are not fully understood. Long noncoding RNAs (lncRNAs) are dysregulated during vascular pathology, but relatively little is known about their involvement in controlling vSMCs function. Cardiac mesoderm enhancer-associated noncoding RNA (CARMN) is a lncRNA located immediately upstream of the microRNAs-143 and-145 (miR-143 and miR-145), both involved in vSMCs function. Objective: We investigated the role of the lncRNA CARMN, independent from miR-143 and miR-145, as a potential regulator of vSMC phenotypes in vitro and the consequences of its loss during the development of atherosclerosis in vivo. We hypothesized that loss of CARMN is a primary event controlling the functional switch towards proatherogenic vSMC phenotype and accelerates the development of the plaques in vivo. Method and Results: Expression of CARMN lncRNA was silenced using locked nucleic acids antisense oligonucleotides (GapmeRs) in human coronary arterial smooth muscle cells, revealing that GapmeR-mediated loss of CARMN negatively affects miR-143 and miR-145 microRNA expression. RNA sequencing of CARMN-depleted human coronary arterial smooth muscle cells revealed large transcriptomic changes, associated with vSMC proliferation, migration, inflammation, lipid metabolism, and dedifferentiation. The use of miR-143 and miR-145 mimics revealed that CARMN regulates human coronary arterial smooth muscle cell proliferation in a microRNA-independent manner. In humans and mice, CARMN and associated microRNAs were downregulated in advanced versus early atherosclerotic lesions. Using a CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated protein 9) knockout approach, we explored the implications of CARMN depletion during atherosclerosis in vivo. Consistent with in vitro results, the knockout of CARMN impaired the expression of miR-143 and miR-145 under homeostatic conditions. Importantly, when atherosclerosis was induced in these mice, CARMN knockout increased the volume, size, proinflammatory Lgals3 (galectin 3)-expressing cells content, and altered plaque composition, yielding an advanced phenotype. Conclusions: We identified the early loss of CARMN lncRNA as critical event which primes vSMCs towards a proatherogenic phenotype in vitro and accelerates the development of atherosclerosis in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据