4.7 Article

N-nitrosodimethylamine formation potential (NDMA-FP) of ranitidine remains after chlorination and/or photo-irradiation: Identification of transformation products in combination with NDMA-FP test

期刊

CHEMOSPHERE
卷 267, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.129200

关键词

NDMA-FP; RNTD; Transformation products; Chlorine; Sunlight

资金

  1. Long-range Research Initiative of the Japan Chemical Industry Association (JCIA) [PT04-01]
  2. Environment Research and Technology Development Fund of the Environmental Restoration and Conservation Agency of Japan [5-1653]
  3. JSPS KAKENHI [17H00786]
  4. Grants-in-Aid for Scientific Research [17H00786] Funding Source: KAKEN

向作者/读者索取更多资源

NDMA, a probable carcinogenic disinfection by-product, can be formed following chloramination of ranitidine, and the study found a complex relationship between ranitidine transformation products and NDMA formation potential (NDMA-FP). Some transformation products were identified to influence the generation of NDMA-FP.
N-nitrosodimethylamine (NDMA), a probable carcinogenic disinfection by-product, can be formed with high molar yields following chloramination of ranitidine (RNTD), a histamine H 2 -receptor antagonist. Although RNTD and some of its transformation products (TPs) have been studied under chlorination and photo-irradiation, the relationship between RNTD TPs and NDMA formation potential (NDMA-FP) remaining after those processes is still unclear. This study investigated the effects of chlorination and/or photo-irradiation on NDMA-FP derived from RNTD, simulating an urban water environment receiving treated wastewater. After chlorination and/or photo-irradiation of RNTD, ten TPs including five new ones were identified by liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTof-MS). In addition, important RNTD TPs responsible for NDMA-FP (e.g., chlorinated and hydroxylated RNTD: TP-364) were also confirmed by the relationship between detected peak area and NDMA-FP. The results showed that NDMA-FP remained due to the presence of RNTD TPs, although RNTD itself was significantly removed by chlorination and/or photo-irradiation. TP-364 was only formed by chlorination of RNTD and could not be removed by photo-irradiation. TP-314 (a stereoisomer of RNTD), -299, and -286, which were mainly formed by photo-irradiation of RNTD but not by photo-irradiation after chlorination, had strong positive correlations with NDMA-FP (R-2 > 0.90; F-test, P < 0.01). (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据