4.7 Article

Environmental disappearance of acetochlor and its bioavailability to weed: A general prototype for reduced herbicide application instruction

期刊

CHEMOSPHERE
卷 265, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.129108

关键词

Acetochlor; Degradation; Migration; Weed annihilation; Application reduction

资金

  1. National Key Research and Development Program of China [2016YFD0200201]

向作者/读者索取更多资源

The consecutive application of herbicide acetochlor has resulted in widespread drug resistance of weeds and high risks to the environment and human health. Our study systematically investigated the behaviors of acetochlor in different soils, revealing variations in degradation rates and adsorption properties, as well as identifying metabolites and conjugates through various pathways.
The consecutive application of herbicide acetochlor has resulted in the widespread drug resistance of weeds and the high risks to environment and human health. To assess environmental behaviors and minimal dosage of acetochlor application in the realistic soil, we systematically investigated the acetochlor adsorption/desorption, mobility, leaching, degradation, weed bioavailability and lethal dosage of acetochlor in three soil types including Nanjing (NJ), Yancheng (YC) and Yingtan (YT). Under the same conditions (60% moisture and darkness), acetochlor had a half-life of disappearance 3 days in NJ, 4.9 days in YC and 25.7 days in YT soils. The HRLC-Q-TOF-MS/MS analyses identified ten metabolites and eight conjugates generated through dealkylation, hydroxylation, thiol conjugation and glycosylation pathways. The acetochlor adsorption to soils ranked in the order of YT > YC > NJ and was committed to the Freundlich model. By examining the effects of soil moisture, microbial activity, illumination/darkness, etc. on acetochlor degradation in soils, we showed that the chemical metabolisms could undergo multiple processes through soil microbial degradation, hydrolysis or photolysis-mediated mechanisms. The longitudinal migration assay revealed that acetochlor leaching ability in the three soils was YT > YC > NJ, which was negatively associated with the order of adsorption behavior. Four kinds of weed were grown in the acetochlor-contaminated NJ soil. The lethal concentrations for the weed plantlets were 0.16 -0.3 mg/kg, much lower than the dosage of realistic field application. Overall, our work provided novel insights into the mechanism for acetochlor behaviors in soils, the natural degradation process in the environment, and the lethal concentration to the tested weed plants. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据