4.7 Review

Nano-remediation of toxic heavy metal contamination: Hexavalent chromium [Cr(VI)]

期刊

CHEMOSPHERE
卷 266, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.129204

关键词

Nano-remediation; Chromium; Hexavalent; Reduction; Adsorption

向作者/读者索取更多资源

This article discusses the pollution of the environment with toxic heavy metals due to industrialization and modern agricultural practices, with a focus on hexavalent chromium. Various methods, including nano and bioremediation, have been employed to reduce heavy metal concentrations, improving efficiency and lowering costs.
The inexorable industrialization and modern agricultural practices to meet the needs of the increasing population have polluted the environment with toxic heavy metals such as Cr(VI), Cu2+, Cd2+, Pb2+, and Zn2+. Among the hazardous heavy metal(loid)s contamination in agricultural soil, water, and air, hexavalent chromium [Cr(VI)] is the most virulent carcinogen. The metallurgic industries, tanneries, paint manufacturing, petroleum refineries are among various such human activities that discharge Cr(VI) into the environment. Various methods have been employed to reduce the concentration of Cr(VI) contamination with nano and bioremediation being the recent advancement to achieve recovery at low cost and higher efficiency. Bioremediation is the process of using biological sources such as plant extracts, microorganisms, and algae to reduce the heavy metals while the nano-remediation uses nanoparticles to adsorb heavy metals. In this review, we discuss the various activities that liberate Cr(VI). We then discuss the various conventional, nano-remediation, and bioremediation methods to keep Cr(VI) concentration in check and further discuss their efficiencies. We also discuss the mechanism of nano-remediation techniques for better insight into the process. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据