4.7 Article

The role of interactions between extracellular organic matter and humic substances on coagulation-ultrafiltration process

期刊

CHEMOSPHERE
卷 264, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.128501

关键词

M. aeruginosa; Humic acid; Aluminum sulfate; Membrane fouling; Water treatment

资金

  1. National Natural Science Foundation of China [51808532]
  2. Key Research and Development Plan of Shandong Province [2019GSF110013]

向作者/读者索取更多资源

The study found that in a mixed system of cyanobacterium M. aeruginosa and humic acid (HA), the presence of HA can improve the removal efficiency of extracellular organic matter (EOM) and reduce membrane fouling. The interaction between HA and EOM strengthens charge neutralization and reduces chemical bonds, positively impacting the coagulation process.
Removals of extracellular organic matter (EOM) derived from cyanobacterium M. aeruginosa and humic acid (HA) in single-component and bi-component systems and the interactions during the coagulation-ultrafiltration (C-UF) process were investigated in this study. In a single-component system, only 23% EOM could be removed by alum at dose as high as 6 mg/L, which induced serious membrane fouling in the following UF process. Interestingly, higher EOM removal efficiency was achieved (increase by about 20%) with the existence of HA and EOM-HA achieved less decline of permeate flux compared with individual EOM C-UF process. Zeta potential and Fourier transform infrared spectroscopy analysis indicated that the interactions of HA and EOM can strengthen charge neutralization and reduce CH2 chemical bonds, which had a positive effect on the coagulation process. In addition, EOM-HA floc had a more open and looser structure than EOM floc, which was more favorable in the UF process. The extended Derjaguin -Landau-Verwey-Overbeek theory indicated that the acid-base interaction energy was mainly reduced, thereby alleviating membrane fouling. The study showed this beneficial interaction between the HA and EOM would enhance the EOM removal efficacy by coagulation and release the membrane fouling caused by EOM. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据