4.7 Article

Accumulation of phosphorus and calcium in different cells protects the phosphorus-hyperaccumulator Ptilotus exaltatus from phosphorus toxicity in high-phosphorus soils

期刊

CHEMOSPHERE
卷 264, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.128438

关键词

Ptilotus; Phosphorus-hyperaccumulator; High phosphorus tolerance; Phosphorus toxicity; Leaf phosphorus fractions; Cell-specific allocation

资金

  1. ARC Future Fellowship [FT140100103]
  2. China Scholarship Council

向作者/读者索取更多资源

Ptilotus exaltatus can tolerate high levels of phosphorus by allocating phosphorus and calcium to different cell types, thereby avoiding detrimental precipitation of Ca-3(PO4)(2). In contrast, phosphorus toxicity in Kennedia prostrata arises from the co-location of calcium and phosphorus in palisade mesophyll cells.
Ptilotus exaltatus accumulates phosphorus (P) to > 40 mg g(-1) without toxicity symptoms, while Kennedia prostrata is intolerant of increased P supply. What physiological mechanisms underlie this difference and protect P. exaltatus from P toxicity? Ptilotus exaltatus and K. prostrata were grown in a sandy soil with low-P, high-P and P-pulse treatments. Both species hyperaccumulated P (>20 mg g(-1)) under high-P and P-pulse treatments; shoot dry weight was unchanged for P. exaltatus, but decreased by >50% for K. prostrata. Under high-P, in young fully-expanded leaves, both species accumulated P predominantly as inorganic P. However, P. exaltatus preferentially allocated P to mesophyll cells and stored calcium (Ca) as occasional crystals in specific lower mesophyll cells, separate from P, while K. prostrata preferentially allocated P to epidermal and spongy mesophyll cells, but co-located P and Ca in palisade mesophyll cells where granules with high [P] and [Ca] were evident. Mesophyll cellular [P] correlated positively with [potassium] for both species, and negatively with [sulfur] for P. exaltatus. Thus, P. exaltatus tolerated a very high leaf [inorganic P] (17 mg g(-1)), associated with P and Ca allocation to different cell types and formation of Ca crystals, thereby avoiding deleterious precipitation of Ca-3(PO4)(2). It also showed enhanced [potassium] and decreased [sulfur] to balance high cellular [P]. Phosphorus toxicity in K. prostrata arose from co-location of Ca and P in palisade mesophyll cells. This study advances understanding of leaf physiological mechanisms for high P tolerance in a P-hyperaccumulator and indicates P. exaltatus as a promising candidate for P-phytoextraction. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据