4.7 Article

Iron-based metal organic framework MIL-88-A for the degradation of naproxen in water through persulfate activation

期刊

CHEMICAL ENGINEERING JOURNAL
卷 405, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2020.126701

关键词

AOPs; MIL-88-A; Persulfate; Adsorption; Photo-catalysis; Degradation

资金

  1. University Research Board of the American University of Beirut [103603]
  2. USAID-Lebanon through The National Academy of Sciences under PEER project [5-18, 103262]

向作者/读者索取更多资源

This study focused on the catalytic activation of persulfate by synthetic iron-based MOFs, such as MIL-88-A, for the degradation of naproxen in water. The results showed efficient degradation of naproxen and recyclability of MIL-88-A, with optimal conditions at acidic pH and enhanced performance under UVA irradiation. TOF-SIMS analysis confirmed the adsorption and degradation mechanism of naproxen on the surface of MIL-88-A, demonstrating the potential of this AOP-based technology for removing pharmaceutical compounds from water.
In this work, particular interest is given to synthetized iron-based MOF e.g. MIL-88-A especially for its ability to catalytically activate persulfate (PS) in an advanced oxidation process (AOP) toward the degradation of naproxen (NPX) in solution in batch systems. NPX solution (50 mg L-1) was subjected to specific added amount of MIL-88-A followed by PS spiking after equilibrium was reached. The system was optimized for its recyclability and matrix variations by studying parameters including ionic strength, pH, phosphates and bicarbonates content, oxidant nature (S2O82- vs H2O2) as well as UVA irradiation. Results showed that (i) MIL-88-A is a good activator of PS where 65-70% degradation of NPX was noticed within 2 h of reaction at room temperature; (ii) MIL-88-A is recyclable up to 4 successive cycles with significant removal extent; (iii) phosphates had no effect on the degradation of NPX however, bicarbonates exhibited a strong inhibition; (iv) PS activation and NPX degradation were optimal at acidic conditions (pH = 4) and (v) PS generated HRs and SRs in the medium and was shown to be superior oxidant over H2O2 in the presence of MIL88-A. Moreover, experiments under UVA irradiation showed significant improvement of the degradation process of NPX in solution reaching almost complete vanishing after 2 h of reaction. The removal mechanism of NPX was investigated using, for the first time, in addition to traditional analytical techniques e.g. HPLC/DAD/MS-Ion trap, XPS and EPR, the Time of Flight Secondary Ion Mass Spectrometry (TOF-SIMS). TOF-SIMS technique confirmed that adsorption/degradation mechanism of NPX took place at the surface of MIL-88-A making this heterogeneous catalysis AOP-based technology very successful for the elimination of pharmaceutical compounds from water effluents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据