4.7 Article

Modulation of the charge transfer behavior of Ni(II)-doped NH2-MIL-125(Ti): Regulation of Ni ions content and enhanced photocatalytic CO2 reduction performance

期刊

CHEMICAL ENGINEERING JOURNAL
卷 406, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2020.126886

关键词

Modulation; Charge transfer; Metal organic frameworks; Nickel ion dopants; Photocatalytic CO2 reduction

资金

  1. National Natural Science Foundation of China [51702013]
  2. Fundamental Research Funds for the Central Universities [FRF-BD-20-07A, 2018NTST26]
  3. Scientific and Technological Innovation Foundation of Shunde Graduate School, University of Science and Technology Beijing [BK19AE029]
  4. USTB MatCom of Beijing Advanced Innovation Center for Materials Genome Engineering

向作者/读者索取更多资源

Regulation of the electronic structure of metal oxo clusters in metal organic frameworks (MOFs) through doping Ni2+ can enhance charge transfer efficiency and photocatalytic performance. NH2-MIL-125-Ni-1%/Ti showed the highest CO2 conversion rate with 98.6% CO selectivity, demonstrating the potential for developing targeted MOFs photocatalysts by modifying the electronic structure of metal oxo clusters.
Regulation of the electronic structure of metal oxo clusters in metal organic frameworks (MOFs) is a promising way to modulate charge transfer efficiency and photocatalytic performance. Herein, a series of Ni2+ doped NH2-MIL-125-Ti (NH2-MIL-125-Ni-x/Ti) with different Ni2+/Ti4+ molar ratio (x = 0.5%-1.5%) are prepared via an in-situ doping method. Correlations between the electronic structure of (Ti/Ni)(8)O-8(OH)(4) nodes and charge transfer efficiency, bandgap and energy position of band edges of the NH2-MIL-125-Ni-x/Ti are systematically investigated based on experimental and computational method. The doped Ni2+ was confirmed to be an efficient mediator to promote the electron transfer from photoexcited terephthalate ligand to the (Ti/Ni)(8)O-8(OH)(4) nodes in NH2-MIL-125-Ni-x/Ti. The NH2-MIL-125-Ni-1%/Ti exhibited the highest CO2 conversion rate with 98.6% CO selectivity and the factors affecting the photocatalytic CO2 reduction performance are also studied. It provides some guidance for developing MOFs photocatalyst with targeted performance via modification of the electronic structure of metal oxo clusters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据