4.7 Article

Graphene-induced growth of N-doped niobium pentaoxide nanorods with high catalytic activity for hydrogen storage in MgH2

期刊

CHEMICAL ENGINEERING JOURNAL
卷 406, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2020.126831

关键词

Hydrogen storage; Magnesium hydride; Transition metal catalysts; Graphene; Hydriding

资金

  1. National Key R&D Program of China [2018YFB1502102]
  2. National Natural Science Foundation of China [51671172, U1601212]
  3. National Youth Top-Notch Talent Support Program

向作者/读者索取更多资源

This study developed a novel graphene-guided nucleation and growth process to prepare N-doped Nb2O5 nanorods, which significantly improved the hydrogen storage properties of MgH2. MgH2 doped with the nanorods released a substantial amount of hydrogen at lower temperatures, and demonstrated faster kinetics in reloading hydrogen.
High operation temperatures and slow kinetics remain big challenges for using magnesium (Mg) as a practical hydrogen storage medium. In this work, a novel graphene-guided nucleation and growth process was developed for the preparation of N-doped Nb2O5 nanorods that enable remarkably improved hydrogen storage properties of MgH2. The nanorods were measured to be 10-20 nm in diameter. MgH2 doped with 10 wt% of the nanorods released 6.2 wt% H-2 from 170 degrees C, which is 130 degrees C lower than additive-free MgH2, thanks to a 40% reduction in the kinetic barriers. About 5.5 wt% of H-2 was desorbed in isothermal dehydrogenation test at 175 degrees C. Reloading of hydrogen was notably completed at 25 degrees C under 50 atm of hydrogen pressure, which has not been reported before. Density functional theory (DFT) calculations demonstrate the extended bond lengths and weakened bond strengths of Mg-H or H-H when MgH2/H-2 adsorbs on the Nb-N-O/graphene model, consequently favouring lower operating temperatures and improved kinetics for hydrogen storage in MgH2 catalyzed by the grapheneguided N-Nb2O5 nanorods. Our findings provide useful insights in the design and preparation of high-performance catalysts of transition metals and rare metals for on-board hydrogen storage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据