4.7 Article

Multispectral photodetection using low-cost sputtered NiO/Ag/ITO heterostructure: From design concept to elaboration

期刊

CERAMICS INTERNATIONAL
卷 47, 期 11, 页码 15703-15709

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2021.02.141

关键词

NiO; ITO; Responsivity; Multispectral; Photodetector; Heterostructure

向作者/读者索取更多资源

A high-performance multispectral photodetector based on p-NiO/Ag/n-ITO heterostructure was fabricated using RF magnetron sputtering technique at room temperature. The device showed high absorbance and enhanced performance under UV, visible, and NIR lights, indicating potential for various optoelectronic applications. The broadband photodetection property enabled by the optimized NiO/Ag/ITO heterostructure opens new possibilities for low-cost devices with multiple sensing purposes.
High-performance multispectral photodetectors (PDs) are highly attractive for the emerging optoelectronic applications. In this work, a new broadband PD based on p-NiO/Ag/n-ITO heterostructure was fabricated by RF magnetron sputtering technique at room temperature. The tri-layered structure offering multispectral detection property was first identified using theoretical calculations based on combined FDTD and Particle Swarm Optimization (PSO) techniques. The crystal structure of the elaborated sensor was analyzed using X-ray diffraction (XRD) method. The device optical properties were investigated by UV-Vis-NIR spectroscopy. The NiO/Ag/ITO heterostructured PD shows a high average absorbance of 63% over a wide spectrum range of [200 nm-1100nm]. Compared with NiO and ITO thin-films, the performances of the heterostructured device are considerably enhanced. It was found that the prepared PD with NiO/Ag/ITO heterostructure merges the benefits of multispectral photodetection with reduced optical losses and efficient transfer of photo-induced carrier. The device demonstrated a high I-ON/I-OFF ratio of 78 dB and an enhanced responsivity under UV, visible and NIR lights (171 mA/W at 365 nm, 67 mA/W at 550 nm and 93 mA/W at 850 nm). The broadband photodetection property enabled by the optimized NiO/Ag/ITO heterostructure opens a new route for the elaboration of low-cost devices that can offer multiple sensing purposes, which are highly suitable for optoelectronic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据