4.7 Review

Biotechnological production of lipid and terpenoid from thraustochytrids

期刊

BIOTECHNOLOGY ADVANCES
卷 48, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.biotechadv.2021.107725

关键词

Thraustochytrids; Lipid; Metabolic engineering; Downstream processing

资金

  1. Nature Science Foundation of Jiangsu Province [BK20190706, BK20170988]
  2. National Natural Science Foundation of China [21908112, 22038007]

向作者/读者索取更多资源

Thraustochytrids, as fungus-like protists, have drawn increasing attention due to their high lipid content and rapid growth rates. They have unique pathways for high DHA yield and can serve as industrial strains for DHA production, although improving strain performance alone is not sufficient for industrialization.
As fungus-like protists, thraustochytrids have been increasingly studied for their faster growth rates and high lipid content. In the 1990s, thraustochytrids were used as docosahexaenoic acid (DHA) producers for the first time. Thraustochytrids genera, such as Thraustochytrium, Schizochytrium, and Aurantiochytrium have been developed and patented as industrial strains for DHA production. The high DHA yield is attributed to its unique and efficient polyketide-like synthase (PKS) pathway. Moreover, thraustochytrids possess a completed mevalonate (MVA) pathway, so it can be used as host for terpenoid production. In order to improve strain performance, the metabolic engineering strategies have been applied to promote or disrupt intracellular metabolic pathways, such as genetic engineering and addition of chemical activators. However, it is difficult to realize industrialization only by improving strain performance. Various operation strategies were developed to enlarge the production quantities from the laboratory-scale, including two-stage cultivation strategies, scale-up technologies and bioreactor design. Moreover, an economical and effective downstream process is also an important consideration for the industrial application of thraustochytrids. Downstream costs accounts for 20?60% of the overall process costs, which represents an attractive target for increasing the cost-competitiveness of thraustochytrids, including how to improve the efficiency of lipid extraction and the further application of biomass residues. This review aims to overview the whole lipid biotechnology of thraustochytrids to provide the background information for researchers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据