4.8 Article

Optimization of hydrothermal pretreatment conditions for mesophilic and thermophilic anaerobic digestion of high-solid sludge

期刊

BIORESOURCE TECHNOLOGY
卷 321, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2020.124454

关键词

Anaerobic digestion; High-solid sludge; Hydrothermal pretreatment; Mesophilic; Thermophilic

资金

  1. Shanxi Provincial Key Research and Development Project [201703D111019]
  2. National Natural Science Foundation of China [51808373]

向作者/读者索取更多资源

The study optimized hydrothermal pretreatment conditions for continuous mesophilic and thermophilic anaerobic digestion, finding that hydrothermal pretreatment significantly increased methane production and volatile solids reduction in both systems.
Hydrothermal pretreatment (HTP) conditions were optimized for continuous mesophilic (MAD) and thermophilic (TAD) anaerobic digestion of high-solid sludge (10-11% total solids). COD solubilization increased with prolonged HTP durations, and became not significant after 210 min. According to the methane production rate and energy consumption, the optimal HTP temperature was determined at 160 degrees C. Regarding continuous operation without HTP, TAD achieved higher methane yield and volatile solids (VS) reduction, at 0.12 L/g VSadded and 23.9%, respectively. After HTP, methane yield and VS reduction in MAD and TAD were increased by 400% and 191% (MAD), 67% and 72% (TAD), respectively. TAD was limited due to the inhibition from about 2800 mg/L of NH4+-N concentration. The methanogenic activity of MAD was enhanced, whereas TAD displayed a reduced value owing to ammonia inhibition. Ultimately, MAD with HTP and TAD without HTP achieved the higher energy balance, 5.25 and 3.27 kJ/g VS, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据