4.5 Article

Development of highly durable retinal prosthesis using photoelectric dyes coupled to polyethylene film and quantitative in vitro evaluation of its durability

期刊

BIOMEDICAL MATERIALS
卷 16, 期 4, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1748-605X/abe809

关键词

retinal prosthesis; photoelectric dye; polyethylene film; retinitis pigmentosa; durability

资金

  1. JSPS KAKENHI [JP19J13826]

向作者/读者索取更多资源

The study focused on using an anion-exchange reaction to improve the durability of the retinal prosthesis, with TFSI- resulting in enhanced longevity of the film.
Retinal prostheses have been developed to restore vision in blind patients suffering from such diseases as retinitis pigmentosa. In our previous studies, we developed a retinal prosthesis called dye-coupled film by chemical coupling of photoelectric dyes, which absorb light and then generate electrical potential, with a polyethylene film surface. The dye-coupled film is nontoxic, and we recovered the vision of a monkey with macular degeneration. The amount of dye on the dye-coupled film, however, decreased to one-third after five months in the monkey's eye. The photoelectric dye consists of a cation with photoresponsivity and a bromide ion (Br-). Therefore, an anion-exchange reaction could be applied to the dye-coupled film to improve its durability. In this study, the anion-exchange reaction was conducted using bis(trifluoromethanesulfonyl)imide ion (TFSI-), which has lower nucleophilicity than Br-. First, the long-term durability was examined without using animal subjects and in a short period. Subsequently, an elemental analysis was performed to confirm the exchange between Br- and TFSI-, and chemical properties, such as photoresponsivity and durability, before and after the anion exchange, were evaluated. It was quantitatively confirmed that the long-term durability of dye-coupled films can be evaluated in an in vitro environment and in a short period of one-thirtieth by utilizing a saline solution at 60 degrees C, compared with an in vivo environment. In addition, the durability of the dye-coupled film with TFSI- was improved to 270%-320% compared with that of the dye-coupled film with Br-.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据