4.6 Article

Suppression of PAPP-A mitigates atherosclerosis by mediating macrophage polarization via STAT3 signaling

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2020.09.132

关键词

PAPP-A; Atherosclerosis; Macrophage polarization; NF-kappa B; JAK2/STAT3

向作者/读者索取更多资源

The study identified PAPP-A as a positive regulator of atherosclerosis by modulating macrophage polarization through the STAT3 signaling pathway, suggesting it as a potential therapeutic target for atherosclerosis treatment.
Pregnancy-associated plasma protein-A (PAPP-A), a type of metalloproteinase in the insulin-like growth factor (IGF) system, has been implicated in atherosclerosis progression, but its function and mechanism in atherosclerosis is not fully understood. The study was performed to further explore the effects of PAPP-A on inflammation, macrophage polarization and atherosclerosis. In mouse macrophages stimulated by oxidized low-density lipoprotein (ox-LDL), PAPP-A expression was significantly increased. Its knockdown markedly mitigated inflammatory response and polarized macrophages to an M2-like phenotype in RAW264.7 cells upon ox-LDL treatment. Additionally, ox-LDL-induced activation of nuclear factor-kappa B (NF-kappa B) signaling pathway was dramatically restricted by PAPP-A knockdown in macrophages. However, JAK2/STAT3 activation was significantly up-regulated in RAW264.7 cells with PAPP-A inhibition after oxLDL treatment. Importantly, we found that PAPP-A knockdown-induced polarization of M2-like phenotype in macrophages was mainly dependent on STAT3 activation. Clinical studies showed that serum PAPP-A levels were higher in patients with coronary artery disease (CAD) than that of healthy individuals. Apolipoprotein E-knockout (ApoE(-/-)) mice with high fat diet (HFD)-induced atherosclerosis exhibited higher expression of PAPP-A in aortas, which was mainly colocalized with F4/80. Subsequently, we found that PAPP-A deficiency greatly alleviated plaque formation, lesion burden and collagen accumulation in HFD-fed ApoE(-/-) mice. Consistent with in vitro macrophage phenotype, PAPP-A(-/-) reduced F4/80 expression, NF-kappa B activation and inflammatory response, while improved janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling and polarized macrophages to an M2-like phenotype in aortas of ApoE(-/-) mice after HFD feeding. In conclusion, these findings identified PAPP-A as a positive regulator of atherosclerosis by regulating macrophage polarization via STAT3 signal, and thus could be considered as a potential therapeutic target for atherosclerosis treatment. (C) 2020 Published by Elsevier Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据