4.6 Article

Three years of HARPS-N high-resolution spectroscopy and precise radial velocity data for the Sun

期刊

ASTRONOMY & ASTROPHYSICS
卷 648, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/202039350

关键词

Sun: activity; techniques: radial velocities; methods: data analysis; instrumentation: spectrographs; astronomical databases: miscellaneous; planets and satellites: detection

资金

  1. Branco Weiss Fellowship-Society in Science
  2. European Research Council (ERC) under the European Union [851555/SCORE]
  3. Science and Technology Facilities Council (STFC) [ST/R000824/1]
  4. Swiss National Science Foundation (SNSF)
  5. senior Kavli Institute Fellowships
  6. NASA

向作者/读者索取更多资源

This paper introduces a new data reduction software for HARPS-N and demonstrates its improvements, mainly in terms of radial-velocity precision, when applied to the first three years of the HARPS-N solar data set. The newly reduced solar data, representing an unprecedented time series of 34,550 high-resolution spectra and precise radial velocities, are released alongside this paper. These data are crucial to understand stellar activity signals in solar-type stars further and develop the mitigating techniques that will allow us to detect other Earths.
Context. The solar telescope connected to HARPS-N has been observing the Sun since the summer of 2015. Such a high-cadence, long-baseline data set is crucial for understanding spurious radial-velocity signals induced by our Sun and by the instrument. On the instrumental side, this data set allowed us to detect sub- m s(-1) systematics that needed to be corrected for. Aims. The goals of this manuscript are to (i) present a new data reduction software for HARPS-N, (ii) demonstrate the improvement brought by this new software during the first three years of the HARPS-N solar data set, and (iii) release all the obtained solar products, from extracted spectra to precise radial velocities. Methods. To correct for the instrumental systematics observed in the data reduced with the current version of the HARPS-N data reduction software (DRS version 3.7), we adapted the newly available ESPRESSO DRS (version 2.2.3) to HARPS-N and developed new optimised recipes for the spectrograph. We then compared the first three years of HARPS-N solar data reduced with the current and new DRS. Results. The most significant improvement brought by the new DRS is a strong decrease in the day-to-day radial-velocity scatter, from 1.27 to 1.07 m s(-1); this is thanks to a more robust method to derive wavelength solutions, but also to the use of calibrations closer in time. The newly derived solar radial-velocities are also better correlated with the chromospheric activity level of the Sun in the long term, with a Pearson correlation coefficient of 0.93 compared to 0.77 before, which is expected from our understanding of stellar signals. Finally, we also discuss how HARPS-N spectral ghosts contaminate the measurement of the calcium activity index, and we present an efficient technique to derive an index free of instrumental systematics. Conclusions. This paper presents a new data reduction software for HARPS-N and demonstrates its improvements, mainly in terms of radial-velocity precision, when applied to the first three years of the HARPS-N solar data set. Those newly reduced solar data, representing an unprecedented time series of 34 550 high-resolution spectra and precise radial velocities, are released alongside this paper. Those data are crucial to understand stellar activity signals in solar-type stars further and develop the mitigating techniques that will allow us to detect other Earths.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据