4.7 Article

Low-resistivity p-type a-Si:H/AZO hole contact in high-efficiency silicon heterojunction solar cells

期刊

APPLIED SURFACE SCIENCE
卷 542, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2020.148749

关键词

Silicon heterojunction solar cell; Amorphous silicon; Boron doping; Contact resistivity; Aluminum doped zinc oxide

资金

  1. HEMF (Helmholtz Energy Materials Foundry)
  2. Helmholtz association
  3. Initiative and Networking Fund of the Helmholtz Association
  4. China Scholarship Council [201904910431]

向作者/读者索取更多资源

This study demonstrates the implementation of trimethyl boron doped p-type a-Si:H film as a hole transport layer contacting with indium-free aluminum doped zinc oxide in silicon heterojunction solar cells. The research shows that moderate doping concentration can help achieve low defect density and high doping level in the film, resulting in improved cell performance with low contact resistivity.
Decreasing the contact resistance between hydrogenated amorphous silicon (a-Si:H) and transparent conductive oxide film (TCO) is beneficial for achieving high efficiency silicon heterojunction (SHJ) solar cells. This study reports the implementation of trimethyl boron B(CH3)(3) (TMB) doped p-type a-Si:H (a-Si:H(p)) film as hole transport layer contacting with indium-free aluminum doped zinc oxide (AZO) in SHJ solar cells. The influence of doping concentration on the nanostructure of a-Si:H(p), TCO/a-Si:H(p) contact resistivity as well as the resultant cell performance was systematically investigated. It was found that excessive TMB doping results in more carbon and voids inside the films and reduces the doping efficiency, lowering the conductivity and increasing the contact resistivity. a-Si:H(p) film with low defect density and high doping level was obtained at a moderate doping concentration, which facilitates tunneling transport for holes to overcome the high energy barrier at the a-Si:H (p)/AZO interface and results in a low contact resistivity down to 0.14 Omega cm(2). The optimized low-resistivity a-Si:H (p)/AZO contact enables a fill factor above 81% and efficiency of 23.6% for M2 SHJ solar cells, which is comparable with 23.7%-efficient cells using traditional tin doped indium oxide (ITO). To our knowledge, this is the highest efficiency for AZO-implemented SHJ cells without double anti-reflection layer and silver back reflector. This work provides design principles on how to achieve high-efficiency SHJ cells with low resistive loss at the hole contact side via doping engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据