4.8 Article

Economies of scale in battery cell manufacturing: The impact of material and process innovations

期刊

APPLIED ENERGY
卷 286, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2021.116499

关键词

Battery cost; Economies of scale; Minimum efficient scale; Plant size; Battery manufacturing

向作者/读者索取更多资源

Exploiting economies of scale in battery production is essential to reducing high battery costs and advancing the battery industry towards a long-term climate-neutral society. Current battery literature lacks consensus on optimal plant sizes, indicating a need for further research in this area.
One key lever to reduce high battery cost, a main hurdle to comply with CO2 emission targets by overcoming generation variability from renewable energy sources and widespread electric vehicle adoption, is to exploit economies of scale in battery production. In an industry growth currently supported by subsidies, cost-efficient battery plant sizes are vital for the establishment of a self-sustaining industry and a transition into a long-term climate-neutral society. For optimal plant sizing, no consensus has yet been achieved in the battery literature and a detailed analysis of economies of scale is unavailable. To close this gap, a process-based cost modeling approach is taken that reflects the determinants of economies of scale. In state-of-the-art, minimum viable plant sizes are demonstrated to be below 2 GWh year(-1) but may exceed 15 GWh year(-1) in the future. This study finds that economies of scale are related to the capacity of the roll-to-roll processes in electrode manufacturing and can be maximized if the respective equipment operates at its capacity limit. This capacity depends on materials, cell design and roll-to-roll process parameters. Since these parameters improve over time, increased plant sizes will become necessary to achieve cost-efficient production levels. Required plant investments are found to decrease on a per GWh basis, whereas significantly increased funds will become necessary to reach efficient plant sizes in the future. Finally, implications are presented that support future battery cost reductions and a self-sustaining market breakthrough of battery-powered products.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据