4.6 Article

Transcriptome Analysis of Listeria monocytogenes Exposed to Beef Fat Reveals Antimicrobial and Pathogenicity Attenuation Mechanisms

期刊

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.03027-20

关键词

L. monocytogenes; beef fat; long-chain unsaturated fatty acids; antimicrobial activity; pathogenicity attenuation

资金

  1. Agriculture and Agri-Food Canada [A-1632, A1603]

向作者/读者索取更多资源

Fatty acids from flaxseed-fed cattle, especially long chain unsaturated fatty acids, have shown potential as natural antimicrobials against L. monocytogenes by controlling growth and attenuating virulence. This study provides insights into the effectiveness of beef fat fractions as antimicrobial agents against foodborne pathogens.
Listeria monocytogenes is a deadly intracellular pathogen mostly associated with consumption of ready-to-eat foods. This study investigated the effectiveness of total beef fat (BF-T) from flaxseed-fed cattle and its fractions enriched with monounsaturated fatty acids (BF-MUFA) and polyunsaturated fatty acids (BF-PUFA), along with commercially available long-chain fatty acids (LC-FA), as natural antimicrobials against L. monocytogenes. BF-T was ineffective at concentrations up to 6 mg/ml, while L. monocytogenes was susceptible to BF-MUFA and BF-PUFA, with MICs at pH 7 of 0.33 +/- 0.21 mg/ml and 0.06 +/- 0.03 mg/ml, respectively. The MIC of C14:0 was significantly lower than those of C16:0 and C18:0 (P < 0.05). Fatty acids c9-C16:1, C18:2n-6, and C18:3n-3 showed stronger inhibitory activity than c9-C18:1 and conjugated C18:2, with MICs of <1 mg/ml. Furthermore, global transcriptional analysis by transcriptome sequencing (RNA-seq) was performed to characterize the response of L. monocytogenes to selected fatty acids. Functional analysis indicated that antimicrobial LC-UFA repressed the expression of genes associated with nutrient transmembrane transport, energy generation, and oxidative stress resistance. On the other hand, upregulation of ribosome assembly and translation process is possibly associated with adaptive and repair mechanisms activated in response to LC-UFA. Virulence genes and genes involved in bile, acid, and osmotic stresses were largely downregulated, and more so for c9-C16:1, C18:2n-6, and C18:3n-3, likely through interaction with the master virulence regulator PrfA and the alternative sigma factor sigma(B). IMPORTANCE Listeria monocytogenes is a bacterial pathogen known for its ability to survive and thrive under adverse environments and, as such, its control poses a significant challenge, especially with the trend of minimally processed and ready-to-eat foods. This work investigated the effectiveness of fatty acids from various sources as natural antimicrobials against L. monocytogenes and evaluated their potential role in L. monocytogenes pathogenicity modulation, using the strain ATCC 19111. The findings show that longchain unsaturated fatty acids (LC-UFA), including unsaturated beef fat fractions from flaxseed-fed cattle, could have the potential to be used as effective antimicrobials for L monocytogenes through controlling growth as well as virulence attenuation. This not only advances our understanding of the mode of action of LC-UFA against L. monocytogenes but also suggests the potential for use of beef fat or its fractions as natural antimicrobials for controlling foodborne pathogens.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据